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Preface to the Sixth Edition

The material covered in this book grew out of a series of lectures and comple-
mentary exercises presented at a Summer School held at Figueira da Foz (Portugal)
in 1987. At that time, computer simulation methods started to find widespread
applications; although one basic algorithm for Monte Carlo simulation in statistical
physics, due to Metropolis et al., dates back to 1953, it found little use during the
first 20 years after its invention. The reason for this neglect was twofold: Lack of
fast and conveniently accessible computers was a serious hindrance; and there was
then a general preference for analytical theory (using paper and pencil) among
scientists, in comparison with numerical work.

In contrast, now access to efficient computers is easily available, every smart-
phone has orders of magnitude more computer power than the mainframe machines
available in 1987 at university computer centers. Simulations now constitute a very
large fraction of all theoretical work that is published; and if analytical work
involves approximations, it is now considered very natural that the accuracy
of these approximations is tested by appropriate simulations!

Despite the fact that computer simulation today is such an important tool of
research for theoretical physics, a corresponding role of simulations in the teaching
of theoretical physics to some extent is still lacking. Mostly, the courses follow the
traditional textbooks where the subfields of theoretical physics, such as mechanics,
electrodynamics, quantum mechanics, and statistical mechanics, are developed
analytically; simulation methods at best are the subject of a small specialized
course. This “wallflower existence” of simulations in a teaching context does by no
means match the importance of simulation methods, and thus, the present book fills
a distressing gap and satisfies an urgent need.

The present book is suitable both as a textbook for a specialized course and for
use by students or researchers for self-study. The book tries to find a compromise
between teaching the theoretical foundations of Monte Carlo simulation approaches
and the “learning-by-doing” concept through exercises and examples that the stu-
dent can work out. This strategy is clearly visible in the Chaps. 2 and 3 of this book
that are its basic core. There the fundamental theoretical aspects are explained in
rather simple terms, and a practical guide is developed, which enables the reader to
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do original work of his own. This was basically the content of the first edition of
this book in 1988.

Since then, the methodology of Monte Carlo simulation has seen a fantastic
development. In the more recent methodological additions to the technique, the
details are getting more and more specialized and complicated. Realizing the need
to outline this methodological progress in three further chapters that were succes-
sively added in the further editions, we found it necessary to give a more condensed
and somewhat abstract presentation. It was felt that the reader, who has worked
through the more pedagogical first part of the book, should be able to use this
additional material, guiding the reader also to the appropriate original literature. In
this way, the total length of the book did not run out of hand. The present sixth
edition contains two additional chapters that were not present in the earlier editions:
Chap. 7 “Rejection Free Monte Carlo” and Chap. 8 “Finite Size Scaling Tools for
the Study of Interfacial Phenomena and Wetting”. While Chap. 7 thus focuses the
foundation and on new algorithms that have been developed in the last decades,
Chap. 8 focuses on the proper analysis of Monte Carlo results for spatially inho-
mogeneous systems. This topic is of increasing importance for surface science and
nanoscience. As a side remark, we mention that the novel “event chain algorithm”
solved (2011) the long-standing problem of clarifying the equation of state for a
fluid of hard disks. This was the problem already addressed (but by no means
solved!) in the very first Monte Carlo study in statistical physics by Metropolis et al.
(1953).

Since simulation software can nowadays be downloaded simply from the
Internet, carrying out simulations is as easy as never before; practically anyone can
now try a “simulation study.” However, if this is done without a proper under-
standing of the underlying methods, the likelihood of producing low quality results
of very little usefulness is very great. The present book guides the newcomer to
avoid such misuse of Monte Carlo simulations, giving the necessary background on
the methods, as well as their intrinsic limitations (finite size effects, judgement
errors due to insufficient length of the runs, lack of self-averaging, etc.). Working
with this book hence will hopefully greatly help to acquire the necessary experience
for doing sound simulation work.

Mainz, Germany Kurt Binder
Heidelberg, Germany Dieter W. Heermann

vi Preface to the Sixth Edition



Preface to the Fifth Edition

The material presented in this book was born out of a series of lectures at a Summer
School held at Figueira da Foz (Portugal) in 1987. Since then, the field of com-
putational physics has seen an enormous growth and stormy development.

Many new applications and application areas have been found. In the 1980s, we
could not foresee this but hoped that the Monte Carlo method would find such
widespread acceptance. We were thus very glad to bring the work forward to a
second edition correcting some misprints. Since then and over the years and edi-
tions of this book, many chapters have been added accounting for the development
of new methods and algorithms. However, the basics have remained stable over the
years and still serve as an entry point for researchers who would like to apply the
Monte Carlo method and perhaps want to develop new ideas. Appending these
basics with chapters on newly developed methods has evolved this book a bit into
the direction of a textbook giving an introduction and at the same time covering a
very broad spectrum. The first part of the book explains the theoretical foundations
of the Monte Carlo method as applied to statistical physics. Chapter 3 guides the
reader to practical work by formulating simple exercises and giving hints to solve
them. Hence, it is a kind of “primer” for the beginner, who can learn the technique
by working through these two chapters in a few weeks of intense study.
Alternatively, this material can be used as text for a short course in university
teaching covering in one term. The following chapters describe some more
sophisticated and advanced techniques, e.g., Chap. 4 describes cluster algorithms
and reweighting techniques, Chap. 5 describes the basic aspects of quantum Monte
Carlo methods, and Chap. 6 (newly added to the fifth edition) describes recent
developments in the last decade, such as “expanded ensemble” methods to sample
the energy density of states, e.g., the Wang–Landau algorithm, as well as methods
to sample rare events, such as “transition path sampling.” These chapters then
should be useful even for the more experienced practitioner. However, no attempt is
made to cover all existing applications of Monte Carlo methods to statistical
physics in an encyclopedic style—such an attempt would make this book almost
unreadable and unhandy. While the “classic” applications of Monte Carlo methods
in the 1970s and 1980s of the last century now are simple examples that a student
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can work out on his laptop as an exercise, this is not true for the recent develop-
ments described in the last chapter, of course, which often need heavy investment of
computer time. Hence, no attempt could as yet be made to enrich the last chapters
with exercises as well.

We are very grateful for the many comments, suggestions, and the pointing out
of misprints that have been brought to our attention. We would like to thank the
many colleagues with whom we had the pleasure to engage with into discussions
and that in some way or the other have shaped our thinking and thus have indirectly
influenced this work.

Mainz, Germany Kurt Binder
Heidelberg, Germany Dieter W. Heermann
July 2010
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Preface to the Fourth Edition

At the beginning of the new millennium, computer simulation is a well-established
method of doing physics research. By Monte Carlo study of models that are
intractable by analytical methods, one closes important gaps in our understanding
of physical reality. “Computer experiments” can be performed where one switches
on interactions at will (or switches them off), and one can “measure” response
functions inaccessible by experiment, one can work in reduced dimensionality (d =
1, d = 2), or one can explore higher-dimensional worlds. These are just a few
examples out of many, on how one can get insight by going beyond experiments.
A valuable advantage also is the possibility of recognizing important aspects of a
problem by visualizing degrees of freedom of a complex many-body system in any
desired detail!

These comments should suffice to explain why the simulational approach in
physics becomes still more popular, and the number of research papers alone that
use it certainly is of the same order as research papers containing experimental work
only or current analytical calculations. However, there still is a strange mismatch
between the strong role of simulations in physics research, and the relatively small
part that is devoted to simulation in the teaching of physics. The present book thus
plays a key role, because it contributes significantly to closing this gap. Students
with a little background in statistical thermodynamics can use this book to learn
how to do simulations, guided using program simulations on classical problems of
statistical physics, like the Ising model or other spin models, percolation, the
Lennard–Jones fluid, etc. The combination of coherent chapters presenting all the
essentials of the techniques of both the generation of simulation “data” and their
analysis with a multitude of exercises of widely varying difficulty provides useful
material, indispensable for the beginner, but containing facets also useful for the
expert.

This concept applied also to previous editions and has proven successful and
useful. Nevertheless, the present edition includes not only significant updates to the
chapters contained in the earlier editions, but also contains a rich new chapter where
an introduction to quantum Monte Carlo methods is provided. This is a topic which
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steadily gains more importance, and hence, including it should significantly
improve the usefulness of the present book.

Again, it is a great pleasure to thank many colleagues for suggestions, as well as
our own students for their questions—all these interactions have helped to improve
the presentation of material in this book.

Mainz, Germany Kurt Binder
Heidelberg, Germany Dieter W. Heermann
May 2002
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Preface to the Third Edition

The last ten years have seen an explosive growth in the computer power available to
scientists. Simulations that needed access to big mainframe computers in the past
are now feasible on the workstation or powerful personal computer available on
everybody’s desk. This ease with which physicists (and scientists in neighboring
areas such as chemistry, biology, economic science) can carry out simulations
of their own has caused a true scientific revolution, and thus, simulational
approaches are extremely widespread.

However, teaching simulation methods in physics is still a somewhat neglected
field at many universities. Although there is plenty of literature describing advanced
applications (the old dream of predicting materials properties from known inter-
actions between atoms or molecules is now reality in many cases!), there is still a
lack of textbooks from which the interested student can learn the technique of
Monte Carlo simulations and their proper analysis step by step.

Thus, the present book still fulfills a need and continues to be useful for students
who wish to bridge gaps in their university education in a “do-it-yourself” basis and
for university staff who can use it for courses. Also researchers in academia and
industry who have recognized the need to catch up with these important develop-
ments will find this book invaluable.

This third edition differs from the first in two important respects: Printing errors
have been eliminated, unclear formulations have been replaced by better ones, and
so on. We are most indebted to Professor Kecheng Qin (Physics Department, Univ.
Beijing) who translated the first edition into Chinese and on that occasion very
efficiently helped us to track down all these minor inconsistencies. We have also
added an entire new chapter “Some Important Recent Developments of the Monte
Carlo Methodology,” which describes technical breakthroughs such as cluster
algorithms and histogram reweighting, which became established after the first
edition was published and are now commonly used by many Monte Carlo practi-
tioners. The many references (far more than 100) in this chapter will make this book
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useful for the experienced researcher as well as the new student, who is encouraged
to apply these techniques when working through the exercises in Chap. 3.

Finally, we wish to thank many colleagues for fruitful interactions, which have
helped to improve this book.

Mainz, Germany Kurt Binder
Heidelberg, Germany Dieter W. Heermann
June 1997
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Preface to the Earlier Editions

When learning very formal material, one comes to a stage where one thinks one has
understood the material. Confronted with a “real-life” problem, the passivity of this
understanding sometimes becomes painfully clear. To be able to solve the problem,
ideas, methods, etc., need to be ready at hand. They must be mastered (become
active knowledge) in order to employ them successfully. Starting from this idea, the
leitmotif, or aim, of this book has been to close this gap as much as possible.

How can this be done? The material presented here was born out of a series of
lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The
series of lectures was split into two concurrent parts. In one part, the “formal
material” was presented. Since the background of those attending varied widely, the
presentation of the formal material was kept as pedagogic as possible.

In the formal part, the general ideas behind the Monte Carlo method were
developed. The Monte Carlo method has now found widespread application in
many branches of science such as physics, chemistry, and biology. Because of this,
the scope of the lectures had to be narrowed down. We could not give a complete
account and restricted the treatment to the application of the Monte Carlo method to
the physics of phase transitions. Here particular emphasis is placed on finite size
effects.

The more “informal” part of the lectures concentrated on the practical side. In a
step-by-step fashion, those who attended the lectures were led from “easy” appli-
cations to more advanced algorithms. In this part, we truly tried to give life to the
ideas and concepts. We hope that in this book, we have captured the spirit of the
Summer School. There, the gap mentioned before narrowed, because many actively
participated in both parts.

From the above, it is clear that the material on the Monte Carlo method presented
in this book can be of use to many scientists. It can be used for an advanced
undergraduate or graduate course. In fact, a draft of this book has been used for a
course held at the University of Mainz. Not only do we present the algorithms in
great depth, we also encourage the reader to actively participate by setting many
problems to be worked out by the reader.

xiii



Also for researchers and scientists using the Monte Carlo method, this book
contains material which may be of importance for their research. We treat, for
example, the problem of statistical errors of a Monte Carlo estimate of a quantity.
Consideration is also given to the problem of self-averaging.

We would like to thank first of all K. Kremer and D.P. Landau. Without their
continuing collaboration and constructive criticism, this book would not have its
present form. Thanks are also due to the students of the condensed matter theory
group at the University of Mainz for their participation and critical reading of the
manuscript. Special thanks go to M. DeMeo for running some of the programs.

Mainz, Germany Kurt Binder
May 1988 Dieter W. Heermann
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Chapter 1
Introduction: Purpose and Scope of This
Volume, and Some General Comments

In recent years the method of computer simulation has started something like a rev-
olution of science: the old division of physics (as well as chemistry, biology, etc.)
into experimental and theoretical branches is no longer really complete. Rather, com-
puter simulation has become a third branch complementary to the first two traditional
approaches.

What, then, is the specific significance of computer simulation or computer exper-
iments? The answer is simply that computer simulation yields exact information
(apart from statistical errors, but these can be made as small as desired, at least in
principle) on model systems which are precisely characterized. (For problems in
statistical physics this means that parameters describing the Hamiltonian are known
explicitly and exhaustively.)

In contrast, the information provided by analytic theory is exact only in rather
rare cases, while in most other cases uncontrolled approximations are required. For
example, statistical physics problems which are solvable for a three-dimensional
geometry are idealized limiting cases such as ideal gases or ideal solutions, coupled
harmonic oscillators, etc. The statistical mechanics of even very simple models,
such as the three-dimensional Ising model, cannot be solved exactly, and much
less is known about models with realistic potentials between the atomic degrees of
freedom. Thus computer simulations are often designed to check the accuracy of
some approximation made in the analytical treatment of a model.

Similarly, the information provided by experiment is almost never precisely char-
acterized in the sense that the effective Hamiltonian of a given experimental sample
is precisely known. Sometimes it is even controversial whether some experimen-
tally observed phenomenon is intrinsic or due to some unknown impurity effects –
remember that the chemical constitution of an experimental sample is known only
approximately anyway. These are just a few examples from which it is clear that
the comparison between analytic theory and experiment does not always lead to
conclusive answers, and simulations are needed to bridge this gap. Thus, a direct
comparison between a simulation of a model and experiment is not hampered by
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inaccurate approximations, as are often inevitable in analytic theory, and hence may
indicate more conclusively whether the model faithfully represents the real system
or not.

Of course, this is by no means the only reason why computer simulations are
attractive. It should be noted that simulations provide information on model systems
which is arbitrarily detailed, and whatever quantity the researcher may consider
useful he may attempt to sample from the simulation. For example, scattering tech-
niques applied to real systems usually yield information on two-particle correlation
functions, but it is very difficult to obtain direct experimental information on triplet
correlations or even higher-order correlations. In contrast, simulations can yield such
higher-order correlations readily, at least in principle. And while the experimenter
may change the temperature and pressure of his sample, he cannot as easily assess
the effect of varying the interatomic potential. But arbitrary variations of interatomic
potentials do not constitute a major difficulty for a computer simulation in any way.
It is now quite clear that the method of computer simulation is of interest in its own
right; it is a valid scientific approach to understanding the laws of nature, instructive
to its practitioners in a way that is complementary to theory or experiment.

In this situation, it is no surprise that there is a true explosion of the literature
on the subject. Many researchers who have previously been doing research in the-
oretical physics (or theoretical chemistry, biology, etc.) start doing simulations, as
well as some experimentalists. And, last but not least, many students who do not
have any other research experience are attracted to the field of computer simulation
immediately.

This great interest, however, encounters a serious difficulty: at this point, there is
hardly any teaching of simulation methods at universities, and there is even a lack
of systematic textbooks from which the newcomer to the field could easily learn
to become an experienced practitioner. Although one of the authors (K.B.) of the
present book has edited several books which collect many applications of the Monte
Carlo computer simulation method in statistical physics, these books do not have
the character of textbooks from which one can easily learn a new field. The other
author (D.W.H.) has written amore pedagogic account of computer simulationmeth-
ods in general; however, due to its generality it cannot go into very great detail as
far as the Monte Carlo investigation of phase transitions and related problems (per-
colation, random walks, polymers, growth phenomena, etc.) is concerned. Similar
reservations apply to other techniques (such as the molecular dynamics method) or
the techniques have other limitations. Thus the art of Monte Carlo simulation so far
is predominantly being learned and spread in two ways, namely, either by the tedious
comparative study of many original papers dating back over several decades, or by
private communications from experienced practitioners.

The purpose of the present book is to fill this gap, at least partially. Thus from
the outset we restrict the scope of the book to one method of computer simulation,
the Monte Carlo method, rather than trying to cover the whole field. This restriction
in scope has several motivations: first of all, the expertise of the authors is mostly
connected with this field: second, by this restriction it is realistic to use this book as
a textbook for a two hour per week university course on computer simulation during
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one university term. Alternatively, it is suitable for use as a text for a two-week
workshop on computer simulation, where the student may practice every day during
this two-week period, and thus learn the Monte Carlo method in a compact intensive
course. Finally, for a student or researcher who tries to work through this book just
by himself, the task still seems manageable!

Unlike previous literature onMonteCarlo simulation, the present bookgives equal
weight to the theoretical foundations of the method (including the analysis of the
results) and to practical work with the method. Performing computer experiments
must be learned, just as the experimentalist learns to plan and set up experiments with
real systems and evaluate the data gained from them by attending practical courses.
This need for practical work in order to learn to carry out such computer experiments
has been encountered again and again both by the authors of this book and by many
of their colleagues. In fact, preliminary unpublished notes for the present book have
been used rather successfully for aworkshop on computer simulation held at Figueira
da Foz, Portugal, in September 1987, and at various courses held at the University of
Mainz. Thus practical experience in teaching Monte Carlo methods to students was
a major factor in determining the content of this book. It has been our experience that
background knowledge of a programming language such as PASCAL can always be
assumed, as well as some knowledge of statistical mechanics, including the basic
principle of phase transitions. If the reader is not yet familiar with concepts such
as critical exponents and the scaling relations among them and models such as the
Ising model, percolation, etc., he can easily find various texts where these concepts
are described clearly (we refer to some of these in this book). Thus there is no need
to repeat these basic concepts.

However, in using the present book it is crucial to use the theoretical part (Chap. 2
in this book) together with the guide to practical work (Chap.3). These chapters
both deal with the same subjects (simple sampling, random and self-avoiding walks,
percolation, the Ising model, etc.) but from somewhat different points of view. In
the first part, concepts for the numerical treatment of these problems were intro-
duced and justified. In the second part, these concepts are applied to problems, and
active participation by the reader (e.g., by working on these problems on a personal
computer) is required in order to understand the concepts more deeply.

A particularly suitable way of doing so is the form of a workshop where this text is
used as the instruction manual. A solution to a problem is presented and immediately
tried out, and the method for solving the problem, the algorithm, is improved upon.
Of course, a workshop works best if there is interaction between the students and
the teacher and among the students. There is a component of feedback, from which
everybody in the workshop benefits. In the form of a written text a workshop is
somewhat less efficient. Nevertheless, we have structured the text such that some form
of interaction with the text, other than passive reading, is possible and necessary.

The aim is to present enough material so that one can start to develop algorithms
for other problems based on the concepts presented here. To achieve this goal it
is necessary to work through the entire material. Thus this workshop (Chap.3) is
a single unit. A second goal of Chap.3 is to present methods of data analysis and
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to enable the reader to become familiar with how they are applied. Again, active
participation is requested.

With the concept used for this book with two chapters which are strongly
correlated with each other, some redundancy is inevitable and even necessary for
the sake of clarity and coherence of presentation. In fact, the scientific background
of all the methods discussed in this book has been presented elsewhere in the lit-
erature: what is new and radically different from previous work is the introductory
character which smoothly leads the student to a lot of practical work and experience
with the method. For this pedagogic goal slight redundancies are even desirable. We
have deliberately selected very simple problems of statistical physics, such as random
and self-avoiding walk, percolation and the Ising model, for which all concepts and
methods can be explained and demonstrated comparatively easily, and do not treat
more complicated problems such as fluids with realistic potentials, spin glasses and
other disordered materials, quantum-mechanical Monte Carlo methods, or problems
in lattice gauge theory, in this part of the book. In our opinion, the reader will be
able to move on to such problems using the other books which exist already on the
Monte Carlo method, after he has worked through the present text. We deal with the
characteristic features of thermal averaging for lattice problemswith discrete degrees
of freedom (Ising model, Potts model, etc.) as well as continuous ones (Heisenberg
and XY magnets, φ4 model, etc.) in some depth, while off-lattice problems such as
simple fluids, are mentioned only briefly. Particular attention is paid to understand-
ing the limitations of the method (effects due to finite size and boundary conditions,
finite observation time effects, the question of self-averaging), and what one does
to overcome these limitations: for example, finite-size effects at second-order phase
transitions as well as at first-order phase transitions can be used as a valuable tool for
studying the bulk properties of the system, if the appropriate finite-size scaling theory
is invoked. The dynamic interpretation of the Monte Carlo importance sampling is
discussed as well. It is shown that although on the one hand an unwanted slowing
down of convergence is implied, particularly near critical points (critical slowing
down) or in glassy systems, on the other hand the Monte Carlo method becomes
a unique tool for the study of the kinetics of stochastic models.

When the reader has worked through Chaps. 2 and 3, he should have acquired
enough familiarity with the basic tools of Monte Carlo methods, allowing him
to proceed to the more advanced simulation methods. These are dealt with in
Chaps. 4–8 in a more condensed form only, to avoid an excessive length of this
book.



Part I
Learning the Basic Tools



Chapter 2
Theoretical Foundations of the Monte
Carlo Method and Its Applications in
Statistical Physics

In this chapter we first introduce the basic concepts of Monte Carlo sampling, give
some details on how Monte Carlo programs need to be organized, and then proceed
to the interpretation and analysis of Monte Carlo results.

2.1 Simple Sampling Versus Importance Sampling

2.1.1 Models

Statistical physics deals with systems with many degrees of freedom. A typical prob-
lem posed by statistical physics is to compute “average” macroscopic observables
of a system for which the Hamiltonian is assumed to be known. For instance, let us
consider magnetic systems: if a ferromagnet has very strong uniaxial anisotropy we
may describe it by the Ising model, where N spins Si interact as

HIsing = −J
∑

〈i, j〉
Si Sj − H

∑

i

Si , Si = ±1, (2.1)

where the spin Si at lattice site i can point up or down along the “easy axis”, the
exchange energy J is restricted in (2.1) to nearest neighbors, and H is a magnetic
field (the term −H

∑
i Si describing the Zeeman energy of the system). Other cases

occur, however, if the ferromagnet has planar anisotropy (the spin being restricted to
lie in the xy plane: XY model) or is fully isotropic (Heisenberg model):
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HXY = −J
∑

〈i, j〉
(Sx

i S
x
j + Sy

i S
y
j ) − Hx

∑

i

Sx
i , (2.2)

(Sx
i )2 + (Sy

i )2 = 1,

HHeisenberg = −J
∑

〈i, j〉
(Si · S j ) − Hz

∑

i

Szi, (2.3)

(Sx
i )2 + (Sy

i )2 + (Szi )
2 = 1.

Of course, the large variety of real materials that the experimentalist can prepare
in his laboratory creates interest in many variants of these models: instead of spin
quantum number S = 1

2 , implied in (2.1), or S → ∞, implied in (2.2) and (2.3), we
may wish to consider general spin quantum numbers; instead of exchange between
nearest neighbors only, we may wish to include exchange energies between next
nearest neighbors, third nearest neighbors, etc.; instead of the full isotropy in (2.3),
there may be a need to add a uniaxial or planar anisotropy term to it; instead of
uniform exchange J and uniform field H in (2.1), it may be appropriate to work
with random exchange constants Jij and random fields Hi , to model some frozen-in
random disorder in the system. Thus, magnetic solids already provide us with an
incredible wealth of model Hamiltonians, for which (2.1)–(2.3) just provide proto-
type examples, and this wealth of models is only a small part of the broad spectrum
of applications provided by condensed matter physics.

One task of statistical physics is to compute from the model Hamiltonian H the
desired average properties, e.g., the average energy E or average magnetization M
per degree of freedom,

E = 〈H〉T /N , M =
〈∑

i

�Si
〉

T

/N . (2.4)

Here the thermal average of any observable A(x)[A = H,
∑

i
�Si , etc., and the vector

x in phase space stands symbolically for the set of variables describing the considered
degree of freedom, e.g., x = (S1, S2, . . . , SN ) for (2.1) x = (�S1, �S2, . . . , �SN ) for
(2.3)] is defined in the canonical ensemble

〈A(x)〉T = 1

Z

∫
dx exp [−H(x)/kBT ] A(x), (2.5)

Z =
∫

dx exp [−H(x)/kBT ].

It is appropriate to call these classes of problems “statistical physics” because the
normalized Boltzmann factor

p(x) = 1

Z
exp [−H(x)/kBT ] (2.6)
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plays the role of a probability density describing the statistical weight with which
the configuration x occurs in thermal equilibrium.

Now although (2.6) gives a formally exact description of the probability distribu-
tion p(x), we are still in trouble:we are neither interested in such detailed information
(in our examples x stands for a set containing the N spin degrees of freedom), nor
is it possible to carry out the integrations in this high-dimensional space [(2.4) and
(2.5)] in the general case.

2.1.2 Simple Sampling

The Monte Carlo method in equilibrium statistical mechanics starts from the idea
of approximating the exact equation (2.5), where one integrates over all states {x}
with their proper weights p(x), by a summation using only a characteristic subset of
phase space points {x1, x2, . . . , xM} which are used as a statistical sample. Clearly,
if one considers the limit M → ∞, the discrete sum

A(x) =

M∑

l=1

exp [−H(xl)/kBT ] A(xl)

M∑

l=1

exp [−H(xl)/kBT ]

(2.7)

must approximate (2.5), just as in numerical integration routines integrals are replaced
by sums [for discrete degrees of freedom, such as the Ising problem,

∫
dx in (2.5)

already stands for a discrete summation over all the 2N states x = (S1, . . . , SN ),
of course, but in (2.7) we then wish to work with a small subset of these states
only, M � 2N ]. But, unlike in standard routines to solve one-dimensional integrals∫

f (x)dx , where f (x) is a function of one real variable x only, instead of a high-
dimensional vector x, it makes no sense to choose the points xl according to a regular
grid, ratherwe have to choose the points xl at random. In order to appreciate this point
in detail, let us consider theXYmodel defined in (2.2) as an example. Because (Sx

i )2 +
(Sy

i )2 = 1 for each site i , it is convenient to write Sx
i = cosϕi , S

y
i = sin ϕi and take

the angle ϕi (0 ≤ ϕi < 2π) as a variable to characterize the degrees of freedom.
Then

∫
dx simply means

∏∫ 2π
0 dϕi . Let us now introduce a regular grid, defined by

ϕ
γ

i = (γi/p)2π , with γi = 1, 2, . . . , p, where p is some integer characterizing the
grid. Obviously the total number of points to be used in this grid is pN , which is very
large for large N , impossible to use in practice even if p is rather small. Apart from
this difficulty, even if we were able to work with a reasonably large value for p, we
would still have the problem that almost all points were located on the surface of the
integration hypercube and almost none in its interior. Since in any lattice direction
of the hypercube there are p points of the grid, p − 2 being in the cube interior, the
total fraction of points in the interior is
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[(p − 2)/p]N = (1 − 2/p)N

= exp

[
N log

(
1 − 2

p

)]
≈

p large
exp

[
−2N

p

]
−→
N→∞ 0.

A much better, i.e., uniform, distribution of grid points is achieved if we choose the
points xl at random, utilizing “pseudo-random numbers” produced by a “random
number generator” built into the computer. This use of random numbers has given
this game its name! In fact, the method described thus far by (2.7) is indeed a variant
of Monte Carlo methods, namely the simple sampling Monte Carlo method.

2.1.3 Random Walks and Self-avoiding Walks

As an example of problems for which the simple sampling technique has actually
been and is still used, we mention the study of self-avoiding walks (SAWs) on
lattices, see, e.g., [2.1]. These self-avoiding walks are used for modelling the large-
scale properties of long flexible macromolecules in solution [2.2–2.4]. Since it is
rather instructive to discuss both the advantages and the disadvantages of studying
such random-walk-type problems with simple sampling Monte Carlo methods, we
give a brief digression on this subject in the following.

Figure 2.1 shows various types of random walks on the square lattice. There are
four different types of vectors v(k) connecting a site to its nearest neighbor on the
lattice (the lattice spacing is taken to be unity)

v(1) = (1, 0), v(2) = (0, 1), v(3) = (−1, 0), v(4) = (0,−1). (2.8)

An algorithm which generates simple (unrestricted) random walks of N steps now
proceeds as follows:

Algorithm 2.1 Random walks
i) r0 = 0 (origin of coordinate system) and put k = 0
ii) Choose a random integer νk between 1 and 4
iii) Replace k by k + 1 and put rk = rk−1 + v(νk−1)

iv) If k = N put rk = R (end to end distance of the walk); else return to step (ii). (2.9)

An example of a walk with N = 22 generated by this procedure is shown in
Fig. 2.1a; the generation of randomwalks will be studied inmore detail in Sect. 3.2.1.
At this point we only note that for a lattice of coordination number z the total num-
ber ZN of all such (different) random walks (RWs) is simply

ZRW
N = zN . (2.10)
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Fig. 2.1 An unrestricted
random walk (RW) of 22
steps on the square
lattice (a), a nonreversal
random walk (NRRW) (b),
and two self-avoiding walks
(SAWs) (c). Sites are
numbered in the order that
they are visited. Bonds with
arrows are selected
consecutively by means of
random numbers. The dots
on the lattice sites then
represent the monomers of
the polymer chain
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If the random walk is taken as a model for a polymer chain, ZN is just the polymer
partition function. (In the absence of any interactions all chain configurations have
exactly the same statistical weight.)

While Algorithm 2.1 may be a reasonable model for hopping conduction in solids
or other diffusion processes on ideal lattices, it is not a good model for polymers
in solution, not just because of the unrealistic features of using a lattice structure to
model the conformations of a macromolecule, but in particular because the excluded
volume interaction is ignored. Unlike real polymers, the random walk in Fig. 2.1a
intersects itself and folds back on itself. The latter feature is eliminated by defining the
nonreversal random walk (NRRW) for which immediate reversals are forbidden. We
can define an algorithm for this NRRW by introducing a sort of “periodic” boundary
condition for the vectors v(νk) by defining

v(ν ± 4) = v(ν) (2.11)
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and modifying step (ii) of (2.9) for k > 1 by introducing a one-step memory:
(ii′): Choose a random number out of the triplet

{νk−1 − 1, νk−1, νk−1 + 1} and take it as νk . (2.12)

An alternative realization of theNRRWwould proceed as in (2.9) but would throw
νk away if v(νk) = v(νk−1 + 2), using (2.11) if necessary, and iterating step (ii). In
this way the same random numbers yielding the RW with N = 22 in Fig. 2.1a yield
a NRRW with N = 19 in Fig. 2.1b. From (2.12) we realize that

ZNRRW
N = (z − 1)N . (2.13)

At this point, the reader should work through Sect. 3.2.2 to gain insight into the
NRRW from practical work. It is clear that the NRRW algorithm still leads to chain
configurations whichmay intersect, which is a qualitatively unrealistic feature of real
macromolecule configurations as mentioned above. We can change our algorithm in
order to generate self-avoiding walks (SAWs) instead of NRRWs by adding in (2.9)
between step (iii) and step (iv) the further condition:

(iii′) If rk leads to a lattice site which has already been visited by this
walk, stop the construction, return to (i) and start the construction
all over again. (2.14)

It turns out that in this case the number of configurations no longer has the simple
exponential form as in (2.10) or (2.13), instead, a simple form holds only in the
asymptotic limit N → ∞, and even then involves a power-law correction term,

ZSAW
N −→

N→∞ N γ−1zNeff , zeff ≤ z − 1. (2.15)

Note that γ is a critical exponent, and the effective coordination number zeff in
general is noninteger (zeff = z − 1 only for z = 2; the one-dimensional lattice). For
three-dimensional lattices neither γ nor zeff can be calculated by exact methods
analytically; therefore Monte Carlo methods play an important role in estimating
these quantities characterizing the SAW statistics.

Figure 2.1c shows that the same random numbers drawn for the construction of
the RWor the NRRWexample would terminate the SAWalready at the fifth step, and
hence according to (2.14) this trial to construct a SAW is unsuccessful, and another
attempt needs to be made. Clearly, for large N most attempts will not be successful.
We can estimate the fraction of successful attempts (i.e., the probability pN that
a NRRW of N steps is self-avoiding) simply by taking the ratio of the respective
partition functions:
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pN = ZSAW
N

ZNRRW
N

−→
N→∞ N γ−1

(
zeff
z − 1

)N

= exp

(
−N ln

z − 1

zeff
+ (γ − 1) ln N

)
. (2.16)

Thus, for large N the probability of succeeding in getting SAWs decreases exponen-
tially fast with N ; this inefficiency is called the attrition problem. Therefore, practical
applications of this simple random sampling of SAWs are restricted to N ≤ 100. See
Fig. 2.2 for an example. In this example, a somewhat generalized problem is con-
sidered: in addition to the excluded volume interaction (that is, an infinitely high
repulsive potential if two different monomers occupy the same site) an attractive
energy (−ε, ε > 0) is included if two monomers occupy nearest-neighbor sites on
the lattice. It is then of interest to study the internal energy 〈H〉T of the chain as well
as the chain average linear dimensions (such as 〈R2〉) as a function of the reduced
temperature kBT/ε, since for N → ∞ there occurs at T = θ the so-called collapse
transition of the chain [2.1, 2.3]: for T > θ the chain linear dimension is “swollen”
in comparison to a simple random walk, for which simply

〈R2〉RWT=∞ = N . (2.17)

Instead of (2.17) we have for self-avoiding walks a law involving another critical
exponent (ν)

〈R2〉SAWT>θ ∝ N 2ν, ν ≈ 0.59, N → ∞. (2.18)

Due to the attractive energy between the monomers, the chain “collapses” for T < θ ,
i.e., it takes a rather compact configuration described by

〈R2〉SAWT<θ ∝ N 2/3, N → ∞, (2.19)

while exactly for T = θ the chain configuration is asymptotically similar to that of
an ideal (Gaussian) random walk,

〈R2〉SAWT=θ ∝ N , N → ∞. (2.20)

Note that (2.17) is easily proven exactly, since from (2.9) we immediately conclude

R =
N∑

k=1

v(νk),

〈R2〉RWT=∞ =
N∑

k=1

v2(νk) +
∑

k,k′
(k �=k′)

〈v(νk) · v(νk ′)〉T=∞, (2.21)
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Fig. 2.2 a Simple-sampling data (with 2 × 106 samples for N = 100) for the free-energy difference
ln[ZSAW(T, N )/ZNRRW(T =∞, N )] plotted versus 1/N , for various temperatures (measured in
units of ε/kB) and the tetrahedral lattice. b Log–log plot of 〈R2〉/ l2N against N , l being the
bond length (l = √

3) on the tetrahedral lattice. Data are obtained by simple sampling methods; at
T = 2, N = 80 a result of dynamical simulations with motions of three and four bonds is included.
(From [2.1])

noting that v2(νk) = 1, from (2.8), while 〈v(νk) · v(νk ′)〉T=∞ = 0 since there are no
correlations between different steps of the walk. On the other hand, in the case of
(2.18) and (2.19) obviously there must be strong correlations even between very
distant steps of the walk. Thus it is no surprise that it is possible neither to derive
[(2.18) and (2.19)] analytically nor to locate the “theta temperature” kBθ/ε, where
(2.20) holds, analytically, and thusMonteCarlomethods are useful to study a problem
of this kind.
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At this point it is useful to briefly discuss the practical implementation of this
simple sampling method for SAWs (for more details, the reader should work through
Sect. 3.2.3). First of all we have to keep track of the previous steps of the walk to
make sure that it does not intersect itself. One could store all vectors rk ′ previously
generated in the construction of awalk, 0 ≤ k ′ ≤ k − 2, and checkwhether there exist
a k ′ such that rk = rk ′ . Of course, such an algorithm would be very time consuming,
and it is much more efficient to choose a finite lattice (e.g., of dimension (2N +
1) × (2N + 1) if we wish to study SAWs of N steps at the square lattice) where we
introduce occupation variables ci for each lattice site i and initially put ci = 0 for
all i . Now generating a walk we put ci = 1 if it visits site i , and we generate an
array labeling the lattice sites which have ci = 1 in order in which they have been
visited. Now the excluded volume condition is easily satisfied by checking at each
step whether ci = 0 still at the next site to be visited. After the termination of the
construction (and possible analysis of the SAW configuration) we have to go through
the array of sites which have been visited to replace ci = 1 by ci = 0 again and then
we can start the next construction of the walk. Alternatively, one can increase a label
by one and check if the next site to be visited is equal to the label.

Note also that for studying laws such as (2.15), (2.18)–(2.20) one wishes not only
to study one particular value of N but a whole range of values for N . There is no
need to repeat the procedure for different choices of N ; instead we can put N to the
largest value we wish to analyze and just sample in addition all the walks which are
unsuccessful constructions in the sense of (2.16), i.e., they terminate at some value
N ′ < N since in the (N ′ + 1)th step one would have violated the excluded volume
restriction.

2.1.4 Thermal Averages by the Simple Sampling Method

How does temperature come into the game? By definition of the model, a config-
uration with n nearest-neighbor contacts (other than those along the contour of the
chain itself) will have a Boltzmann weight factor proportional to exp(nε/kBT ). So
we need to keep track of the number n in each configuration and generate the appro-
priate distribution function: the thermal averaging at any temperature T that one
wishes to study can then be done afterwards! Specifically, the Monte Carlo sampling
attempts to estimate the distribution pN (n) = ZSAW

N (n)/ZNRRW
N , i.e., the (normal-

ized) number of SAW configurations of N steps with n nearest-neighbor contacts,
and pN (n, R) = ZSAW

N (n, R)/ZNRRW
N , the number of SAW configurations of N steps

with n nearest-neighbor contacts and an end-to-end vector R. Then the averages of
interest can be expressed as follows:
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〈H〉T =
−ε
∑

n

n exp(nε/kBT )pN (n)

∑

n

exp(nε/kBT )pN (n)
, (2.22a)

〈R2〉T =

∑

n,R

R2 exp(nε/kBT )pN (n, R)

∑

n

exp(nε/kBT )pN (n)
. (2.22b)

The specific heat C per bond of the chain can be obtained utilizing the fluctuation
relation

C

kB
= 1

N

∂(〈H〉T )

∂(kBT )
= 〈H2〉T − 〈H〉2

Nk2BT
2

(2.23)

to find [note that (2.23) is easily verified from (2.22a) and the definition of C , but
holds generally]

C

kB
=
(

ε

kBT

)2

⎛

⎝
∑

n

n2 pN (n)enε/kBT −
[
∑

n

npN (n)enε/kBT

]2
⎞

⎠

N
∑

n

pN (n)enε/kBT
. (2.24)

Figure 2.2 presents some examples found from a simple-sampling study of self-
avoiding walks on the tetrahedral lattice [2.1].

2.1.5 Advantages and Limitations of Simple Sampling

Simple sampling of self-avoiding walks as described so far has two advantages: (1)
In one simulation run we obtain information on the full range of values for chain
length N up to some maximum length, and for a broad range of temperatures, (2)
The individual configurations of the walks are statistically independent of each other,
and therefore standard error analysis applies. Suppose M configurations of N -step
walks have been generated successfully. Then 〈R2〉T=∞ (i.e., in the athermal case)
is obtained as follows, applying (2.7):

〈R2〉T=∞ ≈ R2 = 1

M

M∑

l=1

R2
l , (2.25)

Rl being the end-to-end distance of the lth configuration of the walk, and its error
〈(δR2)2〉T=∞ is estimated as
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〈(δR2)2〉T=∞ ≈ (δR2)2 = 1

M(M − 1)

M∑

l=1

[
R4
l − (R2)

2
]
. (2.26)

For the randomwalk or the nonreversal randomwalk it is easy to predict the expected
relative error, making use of the Gaussian character of the probability distribution
[2.2, 2.3]:

pN (R) ∝ exp
[−dR2/

(
2〈R2〉)] , d is the dimensionality; (2.27)

remember that

pN (R) = pN (x1)pN (x2) . . . pN (xd)

∝ exp

(
− x21
2〈x21 〉

)
exp

(
− x22
2〈x22 〉

)
. . . exp

(
− x2d
2〈x2d 〉

)
and

〈x21 〉 = 〈x22 〉 . . . 〈x2d 〉 = 〈R2〉/d

in an isotropic system where R2 = x21 + x22 + · · · + x2d . From (2.27) one obtains

〈R4〉T=∞ =

∫ ∞

0
Rd+3dR exp

(
− dR2

2〈R2〉
)

∫ ∞

0
Rd−1dR exp

(
− dR2

2〈R2〉
)

=
(
2〈R2〉
d

)2
Γ (d/2 + 2)

Γ (d/2)
= 〈R2〉2 d + 2

d
, (2.28)

and hence the relative error is estimated as

(δR2)2

(R2)2
∼= 1

(M − 1)

(〈R4〉T=∞ − 〈R2〉2T=∞
)

〈R2〉2T=∞
= 1

(M − 1)

2

d
. (2.29)

This is a very simple example of lack of self-averaging.One learns in thermodynamics
that in the thermodynamic limit N → ∞ fluctuations die out, and the relative fluctu-
ation of extensive thermodynamic variables A vanishes, 〈(δA)2〉/〈A〉2 ∝ 1/N → 0.
In a large system, therefore, one single observation Al of a quantity A in equilibrium
is rather close to the average 〈A〉 already: Al will differ from 〈A〉 only by terms of
order 1/

√
N . This property is called strong self-averaging [2.5]. This is obviously

not true for the quantities of interest in a random walk problem, such as 〈R2〉. The
reason that there is no self-averaging for 〈R2〉 is that 〈R2〉 is itself a fluctuation,
in a thermodynamic sense, and the quantity to which the thermodynamic argument
applies is 〈R〉 which according to (2.21) can be written
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〈R〉 =
N∑

k=1

〈v(νk)〉 = N 〈v〉, (2.30)

where 〈v〉 ≡ 0, however. If we were to consider a “biased” randomwalk, however, in
which one particular step orientation is chosen with higher probability than all other
step orientations such that 〈v〉 �= 0, we would have 〈R〉2 = N 2〈v〉2 � 〈R2〉 − 〈R〉2
∝ N , andwewould have the standard thermodynamic relation 〈(δR)2〉/〈R〉2 ∝ 1/N .

For self-avoiding walks the distribution function pN (R) is not a simple Gaussian,
but we have the same property that 〈R4〉T=∞ ∝ 〈R2〉2 (but there is no longer a simple
argument yielding the proportionality factor). It then again follows that the relative
error is independent of N , i.e., there occurs lack of self-averaging.

Apart from these random-walk-type problems and other nonthermal problems
such as percolation [2.6], which will be discussed in Sect. 2.3.1 in another con-
text, simple random sampling techniques are not so useful for evaluating ther-
mal averages such as (2.7). Consider for instance the case where in (2.7) A(xl)
is the Hamiltonian H(xl) itself. Now (2.23) implies that the relative fluctuation(〈H2〉T − 〈H〉2T

)
/〈H〉2T ∝ 1/N , which implies that the probability distribution p(E)

of the energy E per degree of freedom defined as

p(E) = 1

Z

∫
dx δ (H(x) − NE) exp [−H(x)/kBT ] (2.31)

is very sharply peaked, since we can also write

〈H〉T = N
∫ +∞

−∞
Ep(E)dE, 〈H2〉T = N 2

∫ +∞

−∞
E2p(E)dE, (2.32)

and hence p(E)must have a peak of height
√
N andwidth 1/

√
N near E = 〈H〉T /N .

In fact, off second- or first-order phase transitions one can show that p(E) is actually
again Gaussian [2.6]

p(E) ∝ exp

(
− (E − 〈H〉T /N )2

2CkBT 2
N

)
. (2.33)

Figure 2.3 shows a schematic sketch of this probability distribution p(E). Now
a simple sampling in fact means a generation of phase space points {x} with a prob-
ability distribution p(E) peaked at E = 0 [for models such as (2.1)–(2.3), where
HT=∞ = 0], again with a Gaussian distribution of width 1/

√
N . Thus the probabil-

ity of generating states with E near 〈H〉/N is exponentially small, if the states are
generated by the simple random sampling technique. (As a consequence of this fact,
(2.22) and (2.24) are of no practical use at temperatures T < θ , apart from very small
values of N .) So what is needed is a more efficient technique that samples the config-
urations xl included in the average (2.7) not completely at random, but preferentially
from that regime of phase space which is important at temperature T . Suppose we
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p(
E

)

0<  > T /N E

Fig. 2.3 Probability distribution p(E) of the normalized energy E . The right curve (peaked at
E = 0) is the probability distribution p(E) generated by simple sampling of phase space points {x}.
(Note that for spin models such as the Ising model (2.1), states with positive E and with negative
E are generated with the same probability.) The left curve is the actual probability distribution
p(E) occurring in the canonical ensemble at a finite temperature T . Note that these two probability
distributions for large N overlap only in their wings

consider a process where the phase space points xl are selected according to some
probability P(xl). Choosing this set {xl} now for the estimation of a thermal average,
(2.7) is replaced by

A(x) =

M∑

l=1

exp [−H(xl)/kBT ] A(xl)/P(xl)

M∑

l=1

exp [−H(xl)/kBT ] /P(xl)

. (2.34)

2.1.6 Importance Sampling

A simple and most natural choice for P(xl) in (2.34) would be P(xl) ∝ exp[−H
(xl)/kBT ]; then the Boltzmann factor cancels out altogether, and (2.34) reduces to
a simple arithmetic average

A(x) = 1

M

M∑

l=1

A(xl). (2.35)

The problem is, of course, to find a procedure which practically realizes this so-called
importance sampling [2.7]. Metropolis et al. [2.7] advanced the idea not to choose
the successive states {xl} independently of each other, but to construct a Markov
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process where each state xl+1 is constructed from a previous state xl via a suitable
transition probability W (xl → xl+1). They pointed out that it is possible to choose
the transition probability W such that in the limit M → ∞ the distribution function
P(xl) of the states generated by this Markov process tends towards the equilibrium
distribution

Peq(xl) = 1

Z
exp

(
−H(xl)

kBT

)
(2.36)

as desired. A sufficient condition to achieve this is to impose the principle of detailed
balance

Peq(xl)W (xl → xl ′) = Peq(xl ′)W (xl ′ → xl). (2.37)

Equation (2.37) implies that the ratio of transition probabilities for a “move” xl → xl ′
and the inverse move xl ′ → xl depend only on the energy change δH = H(xl ′) −
H(xl),

W (xl → xl ′)
W (xl ′ → xl)

= exp

(
− δH
kBT

)
. (2.38)

Equation (2.38) obviously does not specify W (xl → xl ′) uniquely, and some arbi-
trariness in the explicit choice of W remains. Two frequently used choices are [2.8,
2.9, 2.9a]

W (xl → xl ′) = 1

2τs

[
1 − tanh

(
δH
2kBT

)]

= 1

τs

exp (−δH/kBT )[
1 + exp (−δH/kBT )

] , (2.39a)

or

W (xl → xl ′) =

⎧
⎪⎪⎨

⎪⎪⎩

1

τs
exp (−δH/kBT ) if δH > 0 ,

1

τs
otherwise,

(2.39b)

τs being an arbitrary factor which for the moment may be chosen as unity. (Later
when we interpret the Monte Carlo process dynamically [2.9, 2.10] we shall choose
τs as a unit of “Monte Carlo time” and callW a “transition probability per unit time”.)

While it is easily checked that (2.39) satisfies (2.37) and (2.38), it remains to
show that a sequence of states xl → xl ′ → xl ′′ . . . generated with the help of (2.39)
actually has the property that its probability distribution P(xl) converges towards
the canonic probability Peq(xl), (2.36). A well-known plausibility argument to show
this is as follows: Suppose we consider a large number of such Markov chains in
parallel, and that at a given step of the process there are Nr systems in state r ,
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Ns systems in state s, etc., and that H(xr ) < H(xs). Using random numbers, one
may construct moves xr → xs , as will be discussed below. Disregarding the energy
change δH, the transition probability for these moves should be symmetric, i.e.,
WδH=0(xr → xs) = WδH=0(xs → xr ).With these “a priori transition probabilities”
WδH=0, it is easy to construct transition probabilities which are in accord with (2.37)
and (2.38), namely

W (xr → xs) = WδH=0(xr → xs) exp(−δH/kBT )

= WδH=0(xr → xs) exp{− [H(xs) − H(xr )] /kBT }, (2.40a)

W (xs → xr ) = WδH=0(xs → xr ) = WδH=0(xr → xs). (2.40b)

The total number Nr→s of transitions from xr to xs at this step of the Markov chains
is

Nr→s = NrW (xr → xs)

= NrWδH=0(xr → xs) exp{− [H(xs) − H(xr )] /kBT }, (2.41a)

while the total number of inverse transitions is

Ns→r = NsW (xs → xr ) = NsWδH=0(xr → xs). (2.41b)

Now the net number of transitions ΔNr→s becomes

ΔNr→s = Nr→s − Ns→r

= NrWδH=0(xr → xs)
(
exp [−H(xs)/kBT ]
exp [−H(xr )/kBT ]

− Ns

Nr

)
. (2.42)

Equation (2.42) is the key result of this argument which shows that the Markov
process has the desired property that states occur with probability proportional to the
canonic probability Peq(xl) as given in (2.36): As long as Ns/Nr is smaller than the
ratio of the canonic probabilities we haveΔNr→s > 0, i.e., the ratio Ns/Nr increases
towards the ratio of canonic probabilities; conversely, if Ns/Nr is larger than the
“canonic ratio”, ΔNr→s < 0 and hence again Ns/Nr decreases towards the correct
canonic ratio. Thus asymptotically for l → ∞ a steady-state distribution is reached,
where Ns/Nr has precisely the value required by the canonic distribution (2.36).
Instead of considering many Markov chains in parallel, we may equivalently cut one
very long Markov chain into (equally long) pieces and apply the same argument to
the subsequent pieces of the chain.

Now we discuss the question: What does the move xl → xl ′ mean in practice?
In principle, there is enormous freedom in the choice of this move which is only
restrictedby the condition that the “a priori probability”WδH=0(xl → xl ′) is symmet-
ric, WδH=0(xl → xl ′) = WδH=0(xl ′ → xl), and that the resulting transition proba-
bility τsW (xl → xl ′) in the presence of the energy change δH should yield values
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significantly different from zero and one sufficiently often. Therefore one mostly
performs moves where only one (or a few) degree(s) of freedom is (are) changed,
since if we change N ′ � 1 degrees of freedom simultaneously, we expect δH/kBT
in (2.39) to be of the order of N ′(ε/kBT ), where ε sets the energy scale [e.g., ε = J
for the magnetic Hamiltonians (2.1)–(2.3), and N ′ is equal to some power of N , i.e.,
N ′ = N δ . Since the temperatures of interest are such that ε/kBT is of order unity,
for nearly every move with N ′ � 1 we would have an extremely small transition
probability if it costs energy, and hence most of the attempted moves would not be
executed at all; the system “sticks” with its respective previous configuration. This
clearly leads to an impractical algorithm inmost cases. However, a route to overcome
this problem are combined Monte-Carlo–Langevin algorithms [2.9a].

2.1.7 More About Models and Algorithms

Figure 2.4 now shows some of the moves commonly used for a variety of mod-
els under study in statistical mechanics. For the Ising model the most commonly
used algorithms are the single spin-flip algorithm and the spin-exchange algorithm
(Fig. 2.4a, b). Note that the single spin-flip algorithm obviously does not leave
the total magnetization of the system invariant, while the spin-exchange algorithm
does. Thus, these algorithms correspond to realizations of different thermodynamic
ensembles: Fig. 2.4a realizes a “grand-canonical” ensemble, where temperature T
and field H are the independently given thermodynamic quantities, and conjugate
thermodynamic quantities (for example, the magnetization 〈M〉T is the quantity con-
jugate to the field H ) need to be calculated, while Fig. 2.4b realizes a “canonical”
ensemble where temperature T and magnetization M are the independently given
thermodynamic quantities (and now the magnetic field 〈H〉T is the conjugate depen-
dent variable which we may wish to calculate).

In calling the (T, H)-ensemble of the Ising model “grand canonical” and the
(T, M)-ensemble “canonical” we apply a language appropriate to the lattice gas
interpretation of the Ising model, where the spin variable Si is reinterpreted as a local
density i (= 0 , 1) with i = (1 − Si )/2. Then 〈M〉T is related to the average den-
sity 〈i 〉T as 〈M〉T = 1 − 2〈i 〉T , and H is related to the chemical potential of the
particles which may occupy the lattice sites.

It is known that in the thermodynamic limit N → ∞, different ensembles in sta-
tistical mechanics yield equivalent results. Thus the choice of the statistical ensemble
and hence the associate algorithmmay seemamatter of convenience.However, finite-
size effects are quite different in the various ensembles, and also “rates” at which
equilibrium configurations are approached in a simulation may be quite different,
and hence the choice of the appropriate statistical ensemble is sometimes a delicate
matter. When we use the word “rate” we have in mind already the dynamic interpre-
tation [2.9] of the Monte Carlo process: then Fig. 2.4a realizes the Glauber [2.11]
kinetic Ising model, which is a purely relaxational model without any conservation
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Fig. 2.4 Examples ofmoves xl→x′
l , commonly used inMonteCarlo simulations for some standard

models of statistical mechanics. a Single spin-flip Ising model (interpreted dynamically, this is the
Glauber kinetic Ising model), b Nearest-neighbor exchange Ising model (interpreted dynamically,
this is the Kawasaki kinetic Ising model). c Two variants of algorithms for the XY-model, using
a random number η equally distributed between zero and one: left, the angle ϕ′

i characterizing the
new direction of the spin is chosen completely at random; right, ϕ′

i is drawn from the interval
[ϕi − Δϕ, ϕi + Δϕ] around the previous direction ϕi . d Moves of the coordinates of an atom
in a two-dimensional fluid from its old position (xi , yi ) to a new position equally distributed in
the square of size (2Δx)(2Δy) surrounding the old position. e Moves of a particle moving in
a given single-site potential V (φ) from an old position φi to a new position φ′

i . f Moves used in the
simulation of latticemodels and off-lattice models of polymers (bonds which aremoved are denoted
by wavy lines): left, “slithering snake” (reptation) algorithm on the square lattice;middle, a dynamic
algorithm relating to the Rouse model of polymer dynamics; right, an off-lattice algorithm for the
freely jointed chain (consisting of rigid links of the same length), where two adjacent links are
rotated together by a randomly chosen angle from an interval [−Δϕ,+Δϕ] in the plane normal to
the dash-dotted axis
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laws, while Fig. 2.4b realizes Kawasaki’s [2.12] kinetic Isingmodel which conserves
magnetization.

For models with continuous degrees of freedom, such as XY (2.2) or Heisenberg
magnets (2.3), but also for models of fluids (Fig. 2.4c, d), it is often advisable to
choose the new degree(s) of freedom of a particle (e.g., the angle ϕ′

i in Fig. 2.4c,
or positions x ′

i , y
′
i in Fig. 2.4d) not completely at random, but rather in an interval

around their previous values. The magnitude of this interval can then be adjusted
such that the average acceptance rate for the trial moves considered in Fig. 2.4 does
not become too small.

It may also be that it is inconvenient (or impossible) to sample the available
phase space for a single degree of freedom uniformly. For example, while there is no
difficulty in sampling angles from the interval [0, 2π ] in the left part of Fig. 2.4c, we
cannot sample a variable φi from the interval [−∞,+∞] uniformly, see Fig. 2.4e.
Such a problem arises for the simulation of the so-called φ4-model on a lattice:

Hφ4 = +
∑

i

(
1
2 Aφ2

i + 1
4 Bφ4

i

)
+
∑

〈i, j〉
1
2C
(
φi − φj

)2
, (2.43)

− ∞ < φi < +∞,

where A, B, C are constants, and the single-site potential V (φ) = 1
2 Aφ2

i + 1
4 Bφ4

i
has the familiar double-minimum shape for A < 0, B > 0. A trivial way of handling
that model would be to cut off the allowed interval for φi at values which exceed the
minimum position (φmin

i = ±√−A/B) substantially. If the potential is very steep,
however, this method is rather inefficient: most of the time one would attempt to
choose trial configurations φ′

i which are rejected because the transition probability is
too small. This problem is avoided if the φi ’s themselves are chosen according to an
importance sampling scheme already, i.e., one constructs an algorithm [2.13] which
generates φi ’s proportional to a probability distribution

p(φi ) ∝ exp

(
−V (φi )

kBT

)
.

Finally, Fig. 2.4f shows that also for randomwalk problems there are importance sam-
pling alternatives to the simple-sampling techniques discussed so far. Suppose one
SAW configuration of a long chain has been constructed by simple sampling. Then
further configurations are generated by various “dynamic” algorithms. For example,
in the “slithering snake” (reptation) [2.14] algorithm one end bond is removed from
one end of the chain (it is decided at random which end is chosen) and therefore
a bond is added in a random direction at the other end. Of course, this trial move is
executed only if it does not violate the SAW constraints.

An alternative to this algorithm which is more realistic if one wishes to simulate
polymer dynamics (e.g., the Rouse model describing the relaxation of a chain in
a heat bath [2.15]) rather allows local rearrangements of groups of neighboring bonds
along the chain, which may randomly flip over to new positions on the lattice, again
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obeying the excluded volume restrictions (Fig. 2.4f, middle) [2.4, 2.16]. Also, the
end bonds may rotate to new positions. Finally, attention is drawn to the fact that it is
always possible to invent continuum (off-lattice) analogs of themodels, e.g., Fig. 2.4f,
right [2.17]. Again, the details of the algorithmwill depend on the goals one addresses
with the simulation. For example, if one wishes to study the dynamics of polymer
melts [2.17] it is important to take into account the “entanglement restriction”, i.e.,
during the randommotion of the links of a chain the chain must not intersect itself or
any links of other chains in the surroundings. The transition probability for motions
where links would be cut then is put equal to zero, and such attempted moves are
never carried out. On the other hand, if we are mainly interested in static equilibrium
properties of the model, it is advantageous to define the rules of the Monte Carlo
game such that the approach to equilibrium is as fast as possible. For the present
problem this means one should disregard entanglement restrictions and allow the
intersection of chains.

Obviously, it is impossible to exhaustively enumerate all the various possibilities
that the step xl → xl ′ may mean, and how the transition probability is defined in
detail. The great variability and flexibility of the Monte Carlo method allows it to be
applied to many problems of very different kinds and this is clearly a major strength
of this method.

2.2 Organization of Monte Carlo Programs, and the
Dynamic Interpretation of Monte Carlo Sampling

2.2.1 First Comments on the Simulation of the Ising Model

Suppose nowwewish to realize, as a simple example, the single spin-flip Isingmodel
simulation of Fig. 2.4a. How is this done?

We first have to specify the type and size of the lattice and the boundary conditions
which have to be used. Suppose we take a simple cubic lattice of size L × L × L
(i.e., all linear dimensions equal) and periodic boundary conditions. Then we have
to specify an initial spin configuration, e.g., all spins are initially pointing up. Now
one repeats again and again the following six steps:

1. Select one lattice site i at which the spin Si is considered for flipping (Si → −Si ).
2. Compute the energy change δH associated with that flip.
3. Calculate the transition probability τsW for that flip.
4. Draw a random number Z uniformly distributed between zero and unity.
5. If Z < τsW flip the spin, otherwise do not flip it. In any case, the configuration

of the spins obtained in this way at the end of step (5) is counted as a “new
configuration”.

6. Analyze the resulting configuration as desired, store its properties to calculate the
necessary averages. For example, if we are just interested in the (unnormalized)
magnetization Mtot, we may update it replacing Mtot by Mtot + 2Si .
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More details on how one realizes an algorithm for this procedure are given in
Sect. 3.4.1. It should be clear from this list that it is fairly straightforward to gen-
eralize this kind of algorithm to systems other than Ising models, such as the other
possibilities considered in Fig. 2.4. The words “spin” and “spin flip(ping)” simply
have to be replaced by the appropriate words for that system.

We add some comments on the practical implementation of this algorithm:
(i) By steps (3–5) the spin flip on the average is executedwith the probability τsW ;

if τsW > 1 it is always executed. This occurs, for example, for the choice (2.39b) if
δH < 0. In this case the steps (3,4) need not be carried out.

(ii) Considerable freedom exists in the order in which subsequent lattice sites {i}
are selectedwhen one repeats this process. Onemay go through the lattice in a regular
(typewriter) fashion or one may select the lattice sites at random; for equilibrium
properties this does not matter. While the random sequence of visited sites is more
realistic if one wishes to obtain dynamic properties (in the spirit of the Glauber
kinetic Ising model), it is somewhat slower than the regular procedure, and also
needs fairly good (uncorrelated) pseudorandom numbers (with bad numbers it may
happen that certain sites are never visited, and then the program output is nonsense!).
It is also possible to first divide the lattice into several interpenetrating sublattices,
and then go in a regular typewriter fashion first through the spins of sublattice 1,
then to sublattice 2, etc. This “checker-board algorithm” [2.18] has the merit that it
is straightforwardly “vectorizable” and hence can be performed very efficiently on
vector computers.

(iii) Since subsequent states differ only by a single spin flip, their physical proper-
ties are very strongly correlated. If step (6), the analysis of configurations, involves
many operations it may be better not to perform it after every (attempted) flip, but
only after much larger “time” intervals. We define one Monte Carlo step (MCS) per
site by carrying out the above (5 or 6) steps once for every lattice site, if the spins
are selected consecutively. If we select them at random, the MCS/site is defined by
requiring that on the average each spin is selected once. It is then advisable to per-
form step 6 (or time-consuming parts thereof) only once everyMCS/site or even only
once every τ th MCS/site, where τ is some typical correlation time (which will be
considered below). Also, it must be noted that although the distribution of generated
states P(xl) asymptotically (that is, for M → ∞) tends to the canonic distribution
Peq(x), (2.36) there is no reason to assume that also the states immediately following
the (arbitrary!) initial configuration already have a distribution close to Peq(x). On
the contrary, it will be necessary to generate a large number of configurations {xl}
until the “memory” of the initial state is lost. For example, if we start our system
with its saturation magnetization but wish to simulate a temperature just above the
Curie temperature, where the magnetization in equilibrium in zero magnetic field
is zero, it may take a very long “time” until the initial magnetization has actually
“decayed”. An example of this decay towards equilibrium, as well as fluctuations in
equilibrium, is given in Fig. 2.5. Again it is helpful to discuss this phenomenon using
the dynamic interpretation of the Monte Carlo process, as will be shown below. In
any case, it is useful to exclude from the final analysis states at the beginning of the
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Fig. 2.5 Absolute value of the magnetization of the two-dimensional nearest neighbor Ising square
lattice with ferromagnetic interaction, for lattice size L = 55 and periodic boundary conditions.
Instantaneous values of |m| are shown as a function of observation time t (in units of MCS/site) for
five different temperatures. Negative values of m at J/kBT = 0.40 are indicated by filled symbols.
This shows that even in the paramagnetic region (J/kBTc ≈ 0.4409) the memory of the initial
starting configuration is lost only rather gradually. Dashed horizontal straight lines indicate the
exact values of the spontaneous magnetization, from the exact solution of Yang. Note that on
approaching Tc from below both the amplitude of the fluctuation δm and the relaxation time get
larger (note the time needed for δm to change sign). Slightly above Tc(J/kBT = 0.43), the total
running time shown here was not enough to relax the sign of the magnetization, which fluctuates
around zero in a finite system at all nonzero temperatures

simulation run which are not well enough “equilibrated” (unless it is the approach
towards equilibrium that one wishes to study!).

(iv) One can save computer time by storing at the beginning of the calculation the
small number of different values that the transition probability W for spin flips (or
spin exchange, respectively) can have, rather than evaluating the exponential function
again and again. This table method works for all problems with discrete degrees of
freedom, not only for the Ising model.

At very low temperatures in the Ising model, nearly every attempt to flip a spin
is bound to fail. One can construct a more complicated but quicker algorithm by
keeping track of the number of spins with a given transition probability Wk at each
instant of the simulation. Choosing now a spin from the kth class with a probability
proportional to Wk , one can make every attempted spin flip successful [2.19]. An
extension of this algorithm to the spin-exchange model has also been given [2.20].

2.2.2 Boundary Conditions

The disturbance from the boundaries of the system is usually diminished by employ-
ing periodic boundary conditions. Thus the uppermost and the lowermost planes in
three-dimensional lattice are regarded as neighbors in the energy calculation, as are



28 2 Theoretical Foundations of the Monte Carlo Method …

the back and front planes, and also the leftmost and rightmost planes of the lattice.
This is shown in Fig. 2.6a for the example of 6 × 6 square lattice. In the program-
ming example reproduced in Table 2.1, periodic boundary conditions are explicitly
implemented. Note, however, that the choice of appropriate linear dimensions and
boundary conditions has to be done with a little bit of thought. For example, while
for the ferromagnetic Ising model the linear dimension L may be either odd or
even, for the antiferromagnetic Ising model it must be even, because otherwise the
two-sublattice structure of the cubic Ising antiferromagnet would not fit to the lat-
tice. Clearly, the periodic boundary condition must have disturbing effects in cases
where the system wants to develop a long-range order that is not commensurate
with the linear dimension of the box, which necessarily occurs in models exhibiting
commensurate–incommensurate phase transitions, such as the ANNNI (anisotropic
next-nearest neighbor Ising)model [2.22]. In addition, at all second-order phase tran-
sitions the critical divergence of the correlation length is strongly disturbed by the
finite size and the periodicity of the system. These finite-size and boundary effects
on phase transitions have received attention over a long period of time [2.23–2.27]
and will be treated in Sect. 2.3. A variant of the periodic boundary condition is often
applied if one stores the labels of the lattice sites in a one-dimensional array going in
a typewriter fashion through the (simple cubic) lattice. Then the nearest neighbors
of site i are taken as i ± 1, i ± L , i ± L2, which implies a skewed periodic bound-
ary condition. This case is also illustrated in Fig. 2.6a. However, it is possible to
take advantage of the one-dimensional labeling (useful particularly in the context of
a good “vectorization” of Monte Carlo programs to be run on vector processors) and
retain the strictly periodic boundary condition with some programming effort [2.28].

Sometimes boundary conditions other than fully periodic boundary conditions
are used, due to the intention to study properties other than bulk properties of the
system. For example, in order to study free surfaces of a system the so-called “free
boundary conditions” are used. Then the “missing spins” next to the free surface are
simply set equal zero. This case is illustrated in Fig. 2.6b. It may then be advisable
to spend more statistical effort in the surface layer (and its adjacent layers) rather
than in layers deep in the bulk. Such an algorithm is called preferential surface
site selection [2.29]. In order to simulate a small superparamagnetic particle one
may use free surfaces in all lattice directions [2.30–2.32] and also rather arbitrary
shapes of these systems can be prescribed [2.33]. In addition, one may wish to apply
boundary fields, particularly if simulations of wetting and layering phenomena are
desired [2.34–2.36]. If one wishes to simulate a thin-film geometry, one uses free
boundary conditions in one lattice direction and periodic boundary conditions in the
remaining ones, see Fig. 2.6b [2.29–2.37]; a semi-infinite geometry is simulated by
choosing one free surface and a self-consistent effective field [2.21] on the opposite
surface, while in the remaining directions again periodic boundary conditions are
used [2.38], see Fig. 2.6c.
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Fig. 2.6 a Square 6 × 6 lattice with periodic boundary conditions (left) and with skew periodic
boundary conditions (right). For the periodic boundary conditions, each lattice site i is labeled
by its two Cartesian coordinates xi , yi , which are integers when the lattice spacing is taken to be
unity. For the skew periodic boundary condition, the sites are labeled in the typewriter fashion
as indicated. b Square 6 × 6 lattice (lattice sites being denoted by dots, nonvanishing bonds by
straight lines connecting them) with free boundary conditions in all lattice directions (left) or with
free boundary conditions in one lattice direction and periodic boundary conditions in the other
lattice direction (right). This latter choice simulates a thin-film geometry. c Boundary conditions
simulating a semi-infinite system. A 6 × 8 square lattice has one boundary (eight spins) free, the
opposite one is exposed to an effective boundary field. The magnitude of this field is adjusted
such that the magnetization in this boundary layer takes on its bulk value [2.21]. In the other lattice
direction, periodic boundary conditions are used
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Table 2.1 Example of a program for the Ising model with a simple cubic lattice. srand() ini-
tializes the random number generator rand(). The energy change is calculated as discussed in
Sect. 2.2.1, the flipping probability is taken as exp(−ΔE/kBT )

(continued)
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Table 2.1 (continued)

2.2.3 The Dynamic Interpretation of the Importance
Sampling Monte Carlo Method

We now turn to a discussion of the correlations between the configurations gen-
erated sequentially one after the other in the Markov chain. Clearly, these corre-
lations strongly affect the accuracy that can be obtained with a given number of
total steps by the Monte Carlo program. These correlations can be understood by
a dynamic interpretation of the Monte Carlo averaging in terms of a master equa-
tion describing a well-defined dynamic model with stochastic kinetics [2.8–2.10,
2.39]. Not only is the interpretation of correlations as time correlations useful to
the understanding of accuracy, it is also the theoretical basis for the application of
Monte Carlo methods to the simulation of dynamic processes [2.40–2.42]. These
dynamic applications include such diverse fields as the Brownian motion of macro-
molecules [2.4, 2.43], relaxation phenomena in spin glasses [2.41] and quadrupolar
glasses [2.44], nucleation phenomena [2.40–2.45] and spinodal decomposition of
mixtures [2.40, 2.45], diffusion-limited aggregation and related irreversible growth
phenomena [2.42, 2.46], and diffusion in alloys and at surfaces [2.40, 2.47]. At this
point, we just associate a “time” t with the scale ν of the subsequent configurations.
We may normalize the time scale such that Nτ−1

s single-particle transitions are per-
formed in unit time [in (2.39) we have already introduced this factor τ−1

s into the
transition probability]. Then the time unit is 1 MCS (Monte Carlo step per parti-
cle). We consider the probability P(xν) ≡ P(x, t) that at time t a configuration x
occurs in the Monte Carlo process. This probability satisfies the Markovian master
equation [2.8–2.10, 2.48]
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dP(x, t)

dt
= −

∑

x′
W (x → x′)P(x, t) +

∑

x′
W (x′ → x)P(x′, t). (2.44)

Equation (2.44) describes the balance considered already above (2.40)–(2.42) by
a rate equation, the first sum on the right hand side representing all processes where
one moves away from the considered state x (and hence its probability is decreased),
while the second sum contains all reverse processes (which hence lead to an increase
of the probability of finding x). In thermal equilibrium the detailed balance condition
(2.37) ensures that these two sums always cancel, and hence for P(x, t) = Peq(x)we
have dP(x, t)/dt = 0, as is required. In fact, Peq(x) is the steady-state distribution of
the abovemaster equation. If the potential energy is finite for arbitrary configurations
{x} of the system, we can conclude from the finiteness of the system that it must
be ergodic. However, as soon as we have infinite potentials (such as in the self-
avoiding walk problem, Figs. 2.1c and 2.4f), certain configurations x are forbidden,
and then ergodicity may be a problem. Even in finite systems the phase space may
decompose into several valleys or “pockets”which aremutually inaccessible. There is
nogeneral rule aboutwhether this happens or not, it really depends on the details of the
algorithm. For example, in the case of the dynamic simulations of SAWs on lattices
(Fig. 2.4f) it can be shown (see, e.g., [2.49]) that certain configurations (see Fig. 2.7
for an example) are inaccessiblewith the algorithms shown there, although in practice
this is not a problem at all since the statistical weight of these inaccessible states is
negligibly small for the averages of interest [2.50]. But this point certainly warrants
some care. In practice one may find an apparent “breaking of ergodicity” even for
systems which are ergodic, if the “time” over which the averaging is extended is not
long enough, i.e., less than some so-called “ergodic time” τe [2.51]. This ergodicity
breaking is intimately related to spontaneous symmetry breaking associated with
phase transitions in the system. In a strict sense, these phase transitions can occur
only in the thermodynamic limit N → ∞, and hence τe also diverges as N → ∞.
The finiteness of τe in the regime where spontaneous order occurs for N → ∞ is
also a finite-size effect. We shall return to this problem in our next section where
finite-size effects of various kinds will be discussed, and assume for the moment
that lim P(x, t) = Peq(x), i.e., the ergodicity property, can be verified on practically
accessible time scales.

In (2.44)we havewritten dP(x, t)/dt rather thanΔP(x, t)/Δt , i.e., weworkwith
differentials rather than discrete differences. This point is sometimes criticized, e.g.,
in [2.52], where it is suggested that due to the discrete time incrementΔt = τs/N one
should rather view the Monte Carlo dynamics as a discrete map, a problem in “non-
linear dynamics”, predicting hence the possibility of chaotic motions, limit cycles,
etc. However, we feel that this criticism is not relevant. As pointed out in [2.53],
the time increment Δt should not be considered as a constant, but is instead a con-
tinuous variable stochastically fluctuating with distribution (N/τs) exp[−Δt N/τs]
which has a mean value Δt = τs/N . Since the time scale on which dynamic cor-
relations decay is of the order of τs itself or even larger, these fluctuations of the
time variable relative to the “time” proceeding in regular steps Δt = τs/N labeling
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(a)

(b)

Fig. 2.7 Examples of self-avoiding walk configurations on the square lattice which are inacces-
sible by dynamic Monte Carlo algorithms. Case a is a configuration which is inaccessible by the
“slithering snake” algorithm, and also cannot relax by this algorithm. Case b can relax neither by
the slithering snake algorithm nor by the “kink-jump” method

the Monte Carlo microsteps are averaged out when one calculates time-displaced
correlation functions.

Thus the average obtained in (2.35) can simply be interpreted as a time average
along the stochastic trajectory in phase space, controlled by themaster equation (2.44)
of the system, i.e., for the variable A considered in (2.5) and (2.35) we now get

A = 1

tM − tM0

∫ tM

tM0

A(t) dt, (2.45)

where tM is the “time” elapsed after M configurations have been generated, tM0

the time after M0 < M configurations have been generated (tM = Mτs/N , tM0 =
M0τs/N ), andwehave anticipated that thefirstM0 configurations are actually omitted
from the average in (2.35), which therefore actually reads

A = 1

(M − M0)

M∑

ν=M0+1

A(xν).

Since xν is the configuration x(t) appearing at the time t = tν = ντs/N , we can
consider A = A(x(t)) simply as a function of system time t itself. Comparing the
time average (2.45) with our starting formula (2.5) which is a canonic ensemble
average, it is obvious that this importance sampling Monte Carlo method leads to
a problem of ergodicity, i.e., the question of whether the time average is identical to
the ensemble average, as anticipated above.

It is now also quite obvious how we can define time-displaced correlation func-
tions 〈A(t)B(0)〉T or A(t)B(0), where B stands symbolically for any other physical
variable:
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A(t)B(0) = 1

tM − t − tM0

∫ tM−t

tM0

A(t + t ′)B(t ′)dt ′, tM − t > tM0 . (2.46)

In practice, (2.45) and (2.46) are used for times tM0 large enough such that the sys-
tem has relaxed towards equilibrium during the time tM0 , and then the states x(t)
included in the sampling from tM0 to time tM are already distributed according to
the equilibrium distribution, P(x, t) = Peq(x), independent of time. However, it is
also interesting to study the nonequilibrium relaxation process by which equilibrium
is approached. In this region A(t) − A is systematically dependent on the obser-
vation time t , and an ensemble average 〈A(t)〉T − 〈A(∞)〉T [limt→∞ A = 〈A〉T =
〈A(∞)〉T if the system is ergodic] is nonzero. Hence we define

〈A(t)〉T =
∑

{x}
P(x, t)A(x) =

∑

{x}
P(x, 0)A(x(t)), (2.47)

where in the second step of this equation we have used the fact that the ensemble
average involved is actually an average weighted by P(x, 0) over an ensemble of
initial states x(t = 0), which then evolve as described by the master equation (2.44).
In practice, (2.47) means an average over nrun � 1 statistically independent runs,

[A(t)]av = 1

nrun

nrun∑

l=1

A(t, l), (2.48)

where A(t, l) is the observable A observed at time t in the lth run of this nonequi-
librium Monte Carlo averaging. These runs in practice differ by use of different
random numbers for each realization of the time evolution, and by use of different
initial configurations x(t = 0). (In special cases, however, such as the study of the
decay of the magnetization of an Ising ferromagnet heated from zero temperature to
a nonzero temperature, the initial configuration is unique and hence common to all
the runs.)

Before going further we now ask the question: Is the “time” t associated with
the label ν of subsequent states generated by the Monte Carlo sampling related to
the physical time by which a real system evolves? In general the answer is that
this is not the case. Systems like Heisenberg magnets, classical fluids, etc., do have
a time evolution described bydeterministic equations for their variables. For example,
Newton’s laws, not the master equation (2.44), describe the motions of molecules in
a fluid, and the Heisenberg ferromagnet considered in (2.3) evolves according to the
equation

�
d

dt
Szk (t) = i

[
Szk ,HHeisenberg

] = −2J
∑

j (�=k)

[
Sy
k S

x
j − Sx

k S
y
j

]
, (2.49)

where 2π� is Planck’s constant and j is a nearest-neighbor of site k. Although
both the (artificial) stochastic dynamics and the actual physical dynamics lead to
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the same thermal equilibrium distribution for N → ∞ (and for finite N as well, if
they correspond to exactly the same statistical ensemble, namely a microcanonical
ensemble where the energy is strictly conserved), there is in general little similarity
between the stochastic dynamics described by (2.44) and the actual dynamics. For
example, for temperatures less than the Curie temperature, (2.49) leads to the well-
known spin wave excitations, while (2.44) can never yield any propagating modes,
but only simple relaxational behavior.

The situation for the Ising Hamiltonian (2.1) is different, of course, since
[Sk,HIsing] ≡ 0: it does not provide any intrinsic time evolution. For the Ising model,
the stochastic kinetics provided by (2.44) can be interpreted physically in terms of
a very weak coupling of the spins to a heat bath (the thermal vibrations of an under-
lying crystal lattice, for instance), which induces random spin flips in the system.
Similarly, in an interstitial alloy the diffusion of the interstitial atomsmay bemodeled
by a stochastic hopping between the available lattice sites [2.40, 2.54, 2.55]. Since
the mean time between two successive jumps is orders of magnitude larger than the
time scale of atomic vibrations in the solid, the phonons can again be reasonably well
approximated as a heat bath, as far as the diffusion is concerned. Of course, there
are also cases of interstitial alloys where this approximation gets inaccurate, such as
superionic conductors. For the realistic simulation of the dynamics of such systems,
the molecular dynamics method [2.56] where one integrates Newton’s laws numeri-
cally is an alternative. The molecular dynamics method gets into trouble, however, if
the system contains two sets of degrees of freedom with very different characteristic
times, because the integration time step must be much less than the characteristic
time of the fast degrees of freedom, and it may be inconvenient (or even impossible)
to extend the time scale of the numerical integration up to the relaxation time of the
slow degrees of freedom. The latter can then often be modeled much more efficiently
by a suitable Monte Carlo algorithm.

2.2.4 Statistical Errors and Time-Displaced
Relaxation Functions

Apart from applications studying the dynamics of suitable model systems, the
dynamic interpretation provided by (2.44)–(2.48) is very useful for understanding
the “statistical errors” of Monte Carlo sampling [2.9]. It is on this point that we now
focus.

Suppose n successive observations Aμ, μ = 1, . . . , n, of a quantity A have been
stored, with n � 1. We consider the expectation value of the square of the statistical
error
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〈(δA)2〉 =
〈[

1

n

n∑

μ=1

(
Aμ − 〈A〉)

]2〉
= 1

n2

n∑

μ=1

〈(Aμ − 〈A〉)2〉

+ 2

n2

n∑

μ1=1

n∑

μ2=μ1+1

(〈Aμ1 Aμ2〉 − 〈A〉2) . (2.50)

Changing the summation index μ2 to μ2 + μ, (2.50) can be rewritten as

〈(δA)2〉 = 1

n

⎡

⎣〈A2〉 − 〈A〉2 + 2
n∑

μ=1

(
1 − μ

n

) (〈A0Aμ〉 − 〈A〉2)
⎤

⎦ . (2.51)

Now we remember that a time tμ = δtμ, is associated with the Monte Carlo process,
δt being the time interval between two successive observations Aμ, Aμ+1. [It is
possible to take δt = Δt = τs/N , i.e., every Monte Carlo microstep is included in
the calculation of 〈(δA)2〉, but often it is more efficient to take δt much larger thanΔt ,
e.g., δt = τs or δt = 10 τs, etc.] Transforming the summation into a time integration
and dropping the index μ from tμ, we obtain [2.9]

〈
(δA)2

〉

= 1

n

[
〈A2〉 − 〈A〉2 + 2

1

δt

∫ tn

0

(
1 − t

tn

) [〈A(0)A(t)〉 − 〈A〉2] dt
]

= 1

n

(〈A2〉 − 〈A〉2)
[
1 + 2

δt

∫ tn

0

(
1 − t

tn

) 〈A(0)A(t)〉 − 〈A〉2
〈A2〉 − 〈A〉2 dt

]
. (2.52)

Next we denote the normalized relaxation function of the quantity A as φA(t) and
define it as

φA(t) = 〈A(0)A(t)〉 − 〈A〉2
〈A2〉 − 〈A〉2 . (2.53)

Note that φA(0) = 1 and φA(t) decays to zero as t → ∞. Let us assume that φA(t)
has actually decayed to zero essentially already on a time-scale τA, with τA � tn .
We can give a precise meaning to τA in terms of the integral

τA =
∫ ∞

0
φA(t)dt. (2.54)

Sincewehave assumed thatφA(t) differs fromzero appreciably only for times t � tn ,
the term t/tn in (2.52) can be neglected in comparison with unity, and the upper limit
of the integration replaced by infinity. This yields

〈(δA)2〉 = 1

n

[〈A2〉 − 〈A〉2]
(
1 + 2

τA

δt

)
. (2.55)
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If δt � τA, then the parenthesis in (2.55) is unity to a very good approximation, and
the statistical error has just the same form as encountered for simple sampling [cf.
(2.26)]. In the inverse case, where δt � τA, we find instead (nδt = τobs is the time
over which the averaging is extended)

〈(δA)2〉 ≈ 2τA
nδt

[〈A2〉 − 〈A〉2] = 2
τA

τobs

[〈A2〉 − 〈A〉2] , (2.56)

which shows that then the statistical error is independent of the choice of the time
interval δt . Although for a given averaging time tn a choice of a smaller value δt
results in a correspondingly larger value of the number n of observations, it does not
decrease the statistical error; only the ratio between the relaxation time τA and the
observation time τobs matters. The fact that 〈(δA)2〉 in general is not given by the
simple sampling result

[〈A2〉 − 〈A〉2]/n, but is enhanced by some factor, had been
noticed before a proper dynamic interpretation of importance sampling was known
and therefore the enhancement factor was called the “statistical inefficiency” of the
method [2.57]. Obviously, this is not a useful notion since the factor 1 + 2(τA/δt)
necessarily results from the fact that Markov processes are described by associated
master equations. Conversely, the dynamic view as exposed here leads to the idea that
one may exploit the freedom in the choice of the transition probability W (x → x′)
as well as in the microscopic nature of the meaning of a transition x → x′ to make
τA as small as possible. This idea is a subject of much research [2.58], and will not
be followed up here. If it can be successfully implemented, the usefulness of Monte
Carlomethods near phase transitions (where τA diverges in the thermodynamic limit:
critical slowing down [2.59]) would be substantially improved, see Chap. 4.

We conclude this section by defining a nonlinear relaxation function φnl
A (t) in

terms of the nonequilibrium average (2.47)

φ(nl)(t) = 〈A(t)〉T − 〈A(∞)〉T
〈A(0)〉T − 〈A(∞)〉T (2.57)

and its associate time

τ
(nl)
A =

∫ ∞

0
φ

(nl)
A (t) dt. (2.58)

The condition that the system is well equilibrated then simply reads

tM0 � τ
(nl)
A . (2.59)

Note that (2.59) must hold for all quantities A, and hence it is important to focus
on the slowest-relaxing quantity (for which τ

(nl)
A is largest) if one wishes to estimate

the suitable choice of tM0 reliably. Near second-order phase transitions, the slowest-
relaxing quantity is usually the order parameter of the transition, and not the internal
energy. Hence the “rule” published in some Monte Carlo investigations that the
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equilibration of the system is established by monitoring the time evolution of the
internal energy is clearly not a valid procedure.

2.3 Finite-Size Effects

2.3.1 Finite-Size Effects at the Percolation Transition

The simplest phase transition problem in statistical physics is probably the purely
geometric problem of the so-called percolation transition [2.60]. One considers an
infinite lattice where each site is randomly occupied with probability p and empty
with probability 1 − p (site percolation problem [2.60]). Neighboring occupied sites
are said to form “clusters” (Fig. 2.8). There exists a critical concentration pc such
that for p < pc there exist only clusters of finite size l on the lattice {l = 1, 2, . . . },
while for p ≥ pc an infinite cluster has formed that “percolates” from one boundary
of the lattice to the opposite one.

For a finite lattice of linear dimension L (to be specific, we take it simple cubic) it is
straightforward to write down an algorithm which generates sample configurations
of such a partially filled lattice. If we denote the occupation variable of a lattice
site (i, j, k) by N (i, j, k) and the C procedure rand() supplies random numbers
equally distributed, a Monte Carlo program for this problem is as follows:

1 for (i = 0; i < L; i++){
for (j = 0; j < L; j++){

3 N[i][j] = 0;
r = (float) rand() / (float) RAND_MAX;

5 if (r < p) {
N[i][j] = 1;

7 }
}

9 }

One “sweep” through the lattice determines thewhole system; there is no need towait
until some “equilibrium” is established, unlike for the importance-sampling method
discussed in the previous section, but we again have a simple-sampling problem. Of
course, to answer questions such as: How many clusters nl(p) containing l occupied
sites exist in the lattice per lattice site? Does there exist a “spanning cluster” of
occupied sites which reaches from one boundary to the opposite one? etc., one
needs sophisticated programs to analyze the generated configurations, which are not
considered here [2.61, 2.62] but will be discussed in Sect. 3.2.4, as well as various
generalizations and variants of the percolation problem.

For the description of the percolation transition, we not only want to estimate
pc, but also compute quantities like the percolation probability P∞(p) (the prob-
ability that an occupied site is part of the percolating cluster) and the percolation
susceptibility χ defined as
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(b)(a)

Fig. 2.8 a Clusters on the square lattice for the site percolation problem. Sites are occupied with
probability p (dots) or empty with probability 1 − p (circles). Neighboring occupied sites form
clusters. The 8 × 8 lattice shown here hence contains clusters with l = 2, l = 3 and l = 8 occupied
sites. b Clusters on the square lattice for the bond percolation problem. Bonds are occupied with
probability p (thick lines) or empty with probability 1 − p (thin lines). Occupied bonds which are
connected to each other form clusters. The lattice shown contains clusters with l = 1, l = 2 and
l = 9 occupied bonds

χ =
∞∑

l=1

′l2nl(p)/p. (2.60)

(The prime means that the largest cluster is omitted from the summation.) These
quantities are expected to show the following critical singularities (in the infinite
lattice) for |p − pc| → 0 [2.60]:

P∞(p) = B̂p

(
p

pc
− 1

)βp

, p > pc [P∞(p) ≡ 0 for p < pc] , (2.61a)

χ(p) =

⎧
⎪⎪⎨

⎪⎪⎩

Γ̂ +
p

(
1 − p

pc

)−γp

, p < pc,

Γ̂ −
p

(
p

pc
− 1

)−γp

, p > pc.
(2.61b)

In a finite lattice, χ(p) cannot diverge but reaches a maximum of finite height only;
the magnitude of this maximum depends on the size of the lattice (Fig. 2.9) [2.63].
Similarly, the percolation probability P∞(p) cannot vanish at any p > 0, but
must attain small nonzero values as soon as p > 0. [Even the probability that
all sites are occupied is nonzero in a finite system as soon as p > 0, namely
it is pLd = exp(Ld ln p) in a d-dimensional system; percolation occurs with the
probability pL = exp(L ln p) as p → 0]. Thus in a finite lattice the singularities
[(2.61a) and (2.61b)] associated with the percolation transition are smoothed out,
and this rounding at the transition is easily understandable geometrically. On a finite
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Fig. 2.9 Percolation probability P(L)∞ (p) plotted versus p (a), for the bond percolation problem
on the square lattice, using various choices of L and periodic boundary conditions, b and c show
corresponding results for χ(L)(p), including also data with free edges (f.e.). (From [2.63])
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lattice only finite clusters are possible, and both the cluster size distribution nl(p)
and the percolation probability P∞(p) are smooth (analytic) functions of p. For the
infinite lattice, the cluster size distribution behaves as [2.60]

nl(p) =
l→∞ l−τ ñ

{
lσ
(
1 − p

pc

)}
, (2.62a)

τ = 2 + 1/δp,

σ = 1/
(
βpδp

) = 1/
(
γp + βp

)
.

While on the infinite lattice at pc the cluster size distribution decays according to
a power law, nl(p) = l−τ ñ(0) as l → ∞, on a finite lattice this power law holds only
for clusters whose radii rl are distinctly smaller than the lattice linear dimension L .
Since

rl =
l→∞ r̂ l1/df , (2.62b)

where df is the “fractal dimensionality” [2.60] of the percolation clusters, and at
p = pc the probability that a cluster percolates (rl ≈ L) is unity, we conclude

Ld
∫ ∞

rl=L
nl(p)dl ≈ Ldñ(0)

∫ ∞

(L/r̂)df
l−τdl

= ñ(0)Ld+df (1−τ)r̂−df (1−τ)/(τ − 1) = 1, (2.62c)

which implies that the exponent of L vanishes, i.e., df = d/(τ − 1) = d/(1 +
1/δp) = dβpδp/(βpδp + βp) = d(βp + γp)/(2βp + γp) = (βp + γp)/νp = d − βp/νp,
where scaling laws such as the hyperscaling relation involving the correlation length
exponent νp(ξp ∝ |p − pc|−νp ), dνp = 2βp + γp, is used. From this expression for df
and (2.62b) we conclude that the number of sites in a “spanning cluster” with rl = L
is lL = (L/r̂)df ∝ Ld−βp/νp , and hence the fraction of occupied sites belonging to
such a spanning cluster must be of the order of P (L)∞ (pc) = L−dlL ∝ L−βp/νp .

2.3.2 Finite-Size Scaling for the Percolation Problem

Now an expression which interpolates between (2.61a) for L � ξp and the above
result for P (L)∞ (p) at p = pc is obtained by the finite-size scaling hypothesis [2.23–
2.26] [note that P (L)∞ (p) may also be defined as the fraction of sites in the largest
cluster]
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Fig. 2.10 Finite-size scaling plots of the data for the percolation probability P(L)∞ (p) shown in
Fig. 2.9a and for the percolation susceptibility (Fig. 2.9b, c). Here Lβp/νp P(L)∞ (p) is plotted versus
(p − pc)L1/νp (a), while L−γp/νpχ(L)(p) is plotted versus (p − pc)L1/νp (b), with the following
choice of exponents: βp = 0.139, νp = 4

3 , γp = 2.41. (From [2.63])

P (L)
∞ (p) = L−βp/νp P̃

(
L/ξp

)
,

P̃(x � 1) ∝ xβp/νp ∝ Lβp/νp (p − pc)
βp , (2.63)

which expresses the principle that the effects of the finite size on the percolation
transition are controlled by the ratio of the correlation length and the lattice linear
dimension. Figure 2.10a shows a test of this relation [2.63]. A similar relation can
be postulated for the susceptibility χ(L)(p):

χ(L)(p) = Lγp/νp χ̃(L/ξp), χ̃(x) ∝
x→∞ x−γp/νp . (2.64)

The asymptotic behavior of the scaling functions P̃(x), χ̃(x) for large x always
follows from the condition that in the thermodynamic limit all powers of L must
cancel out and the correct power laws as written in (2.61) and (2.62) must result.
Figure 2.10b shows a test of the finite-size scaling relation (2.64) for the percola-
tion susceptibility [2.63].

The fact that for p near pc we must have χ(L)(p ≈ pc) ∝ Lγp/νp can be obtained
directly from the definition of χ and (2.62a), noting that the sum must be cut off at
cluster sizes of the order of lL :
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χ(L) ∼= 1

p

lL∑

l=1

l2nl(p) ∼=
p near pc

ñ(0)
lL∑

l=1

l2−τ /pc ≈ ñ(0)p−1
c

∫ lL

0
dl l2−τ

= ñ(0)p−1
c l3−τ

L /(3 − τ) ∝ Ldf (3−τ)

= Ld(1−1/δp)/(1+1/δp) = Lγp/νp . (2.65)

The self-consistency of this geometric interpretation of finite-size scaling at the
percolation transition is noted from calculating the characteristic length ξp from
(2.60) and (2.61) as

χξ 2
p =

∞∑

l=1

r2l l
2nl(p) ∼= r̂2

∫ ∞

0
l2/df+2−τ ñ

[
lσ
(
1 − p

pc

)]
dl

=
(
1 − p

pc

)−(3−τ+2/df )/σ

r̂2
∫ ∞

0
x2/df+2−τ ñ (xσ ) dx

∝
(
1 − p

pc

)−2νp−γp

, (2.66)

since 1/σdf = νp.
When onewishes to use (2.63) and (2.64) to locate pc and determine the exponents

βp/νp, 1/νp (or γp/νp), one can try a simultaneous best-fitting procedure such that
the family of curves P (L)∞ (p) collapses onto a single curve, the scaling function
P̃(x), as well as possible [or that the family of curves χ(L)(p) collapses onto a single
curve, the scaling function χ̃ (x), when plotted appropriately]. Figure 2.10 shows
examples of this sort of “data collapsing”. However, to obtain accurate estimates
it is important to have rather large values of L , since (2.63) and (2.64) hold only
asymptotically in the limit L → ∞: for finite L , there are systematic corrections to
finite-size scaling which lead to systematic deviations from perfect data collapsing.
Since these correction terms are completely disregarded in plots such as shown in
Fig. 2.10, one can never be sure whether the “best-fit” values for pc, βp/νp, 1/νp,
γp/νp are systematically offset from their true values. This problem does not occur
when one samples the probability Ps(p) that a “spanning cluster” (reaching from
one boundary to the opposite one) occurs in the system. Since for the infinite lattice
Ps(p) = 0 for p < pc and Ps(p) = 1 for p ≥ pc, the finite-size scaling relation for
Ps(p) simply reads

P (L)
s (p) = P̃s(L/ξp). (2.67)

As a consequence, different curves P (L)
s (p) for different choices of L should inter-

sect at p = pc in a common intersection point P̃s(0), apart from corrections to scal-
ing. Extrapolation of these intersection points to the limit L → ∞ hence yields
an estimate for pc which is not biased by the choice of the critical exponents and
should be free from the systematic errors noted above. Figure 2.11 shows an exam-
ple demonstrating that accurate estimates are easily obtained from this intersection
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Fig. 2.11 Fraction of conducting samples in the bond percolation problem on the square lattice
where a bond is conducting with probability p(= x) and isolating with probability 1 − p, plotted
as a function of p(= x) for various linear dimensions L: (circles) L = 16; (triangles) L = 64;
(squares) L = 200; (diamonds) L = 512. A sample is conducting only if a “spanning cluster”
occurs, and hence this quantity just measures P(L)

s (p). The percolation threshold pc is obtained as
the common intersection point of these curves. (From [2.64])

method [2.64]. The reader who works through Exercises 3.18, 3.25 of Sect. 3.2.4
will generate similar Monte Carlo data.

2.3.3 Broken Symmetry and Finite-Size Effects at Thermal
Phase Transitions

Effects of finite size on the percolation transition are relatively easy to understand,
firstly, because of their obvious geometric interpretation, secondly, because the sit-
uation is simple due to the lack of any spontaneous symmetry breaking at the tran-
sition. We now discuss ordinary, thermally driven phase transitions, where the sys-
tem state changes from a disordered state at high temperatures to a spontaneously
ordered state at temperatures lower than some critical temperature Tc of a second-
order phase transition. The prototype example is again the Ising ferromagnet (2.1),
where this low-temperature phase is a state with nonzero spontaneous magnetization
(±|Msp| for zero applied field H ). It is well known, of course, that this spontaneous
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Fig. 2.12 Probability distribution P(M) for a finite system at a temperature T less than the critical
temperature Tc where in the thermodynamic limit a spontaneous magnetization ±|Msp| appears.
While P(M) has a peak near M = −|Msp|, where the finite lattice has a more or less uniformly
negative magnetization (shaded), and a second peak where it has a more or less uniformly positive
magnetization (unshaded), in between P(M) has aminimumwhich is nonzero even forM = 0. This
state corresponds to a nonuniform distribution of magnetization in the finite lattice: making use of
the periodic boundary conditions, two domains of opposite magnetization coexist. In a finite lattice,
the system spontaneously makes excursions from states with uniformly negative magnetization
through this intermediate mixed-phase state to states with uniformly positive magnetization, and
vice versa

symmetry breaking can occur in the thermodynamic limit only. For a finite system,
there is always a nonzero probability that the system may pass from a state near
+|Msp| to a state near −|Msp|, as well as in the opposite direction, see Fig. 2.12.
Therefore, the magnetization M at zero field vanishes for all nonzero temperatures,

M(T, H = 0) = 1

N

N∑

i=1

〈Si 〉T,H=0 = 0, (2.68)

irrespective of the value of N . In fact, the first-principles definition of the order
parameter Msp considers M(T, H), first taking the thermodynamic limit N → ∞,
and afterwards letting H tend to zero,

Msp = lim
H→0

lim
N→∞ M(T, H). (2.69)

This double limiting procedure is rather inconvenient to use in practical Monte Carlo
work, and hence is applied only in exceptional cases, such as spin glasses, where the
ordering is very hard to understand [2.65]. In Ising ferromagnets below Tc but not too
close to the critical point, one finds that a magnetization +M (or −M , depending on
the initial condition) is sufficiently metastable for long observation times, and hence
estimates with reasonable accuracy can be obtained although one does not sample
the full equilibrium ensemble [2.66]. However, even above Tc a small magnetization
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will typically be found, due to fluctuations which in a finite system observed over
a finite time have not completely averaged out. One will find a value ±δM , where
δM depends on both the size of the system and the observation time tobs. Similarly,
below Tc the magnetization fluctuates in the range M ± δM or −M ∓ δM , and one
cannot make δM arbitrarily small by making tobs larger and larger. If tobs becomes
of the order of the ergodic time te, which is the time needed to observe transitions
from +M to −M or vice versa, one would start averaging the magnetization to zero.
This situation becomes particularly cumbersome near Tc, where M itself strongly
decreases, while δM increases until the fluctuations become comparable with the
order parameter itself. The reader is urged to work through Sect. 3.4.1 and to program
Exercise 3.36 to verify these remarks.

To avoid these problems, the standard recipe is to record the root mean square
order parameter [2.67]

Mrms =
√

〈M2〉T =
〈(

N∑

i=1

Si/N

)2〉1/2

T

= 1

N

⎛

⎝
N∑

i, j=1

〈Si Sj〉T
⎞

⎠
1/2

. (2.70)

In particular, (2.70) must be used for isotropic spin systems, (2.2) and (2.3), where
one has a vector order parameter Msp, whose orientation is not even metastable. One
observes a sort of “rotational diffusion” of the unit vector along Msp [2.68] and hence
each component of 〈Msp〉T steadily decreases with increasing observation time.

Of course, in a finite system the order parameter Mrms is nonzero at all temper-
atures. Even at infinite temperatures, where 〈Si Sj 〉 = δi j , one still obtains Mrms =
1/

√
N [2.67]. At temperatures slightly above Tc, where the correlation function

G(r i j ) ≡ 〈Si Sj 〉T is slowly decaying,Mrms is evenmuch larger.With periodic bound-
ary conditionsG(r i j ) is translationally invariant andhenceMrms = (

∑N
i=1〈Si Sj 〉T /N )1/2.

Let us now discuss this expression at Tc itself [2.21]. In an infinite system, the decay
of correlations at Tc is described by

G(r i j ) −→|r i j |→∞ Ĝ|r i j |−(d−2+η), (2.71)

where Ĝ is a “critical amplitude” and η a critical exponent. We now approximate
G(r i j ) in the finite system of size Ld by takingG(r i j ) also from (2.71) if |r i j | < L/2.
Then we obtain [2.21]
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N∑

i=1

〈Si S j 〉T ∝
∫ L/2

0
rd−1
i j dri j 〈Si S j 〉T

∝
∫ L/2

0
r1−η

i j dri j ∝ L2−η, (2.72a)

and hence Mrms becomes (N = Ld)

MT=Tc
rms ∝ (

L2−d−η
)1/2 ∝ L−β/ν, (2.72b)

where we have used the scaling laws (2 − η) = γ /ν, dν = 2β + γ [2.69]. Note
the similarity of (2.72b) to the corresponding result for the percolation problem,
P (L)∞ (pc) ∝ L−βp/νp .

2.3.4 The Order Parameter Probability Distribution and Its
Use to Justify Finite-Size Scaling and
Phenomenological Renormalization

Equation (2.72b) is already a result characteristic of finite-size scaling theory [2.23–
2.26]. To describe this theory more systematically, we now discuss the probability
distribution of the order parameter s [2.25]. For T > Tc and linear dimensions L
exceeding the correlation length ξ of order parameter fluctuations (ξ ∝ |T − Tc|−ν),
this distribution should be Gaussian as considered in (2.33)

PL(s) = Ld/2
(
2πkBTχ(L)

)1/2
exp

[−s2Ld/
(
2kBTχ(L)

)]
, (2.73)

T > Tc, H = 0.

The “susceptibility” χ(L) defined in (2.73) from the half-width of the distribution
should smoothly tend towards the susceptibility χ of the infinite system as L → ∞
(remember χ ∝ |T − Tc|−γ ). For T < Tc but again L � ξ , the distribution is peaked
at values±ML near±Msp; near these peaks again a description in terms of Gaussians
applies (while a different behavior occurs near s = 0 [2.25, 2.70])

PL(s) = Ld/2

(
2πkBTχ(L)

)1/2

[
1

2
exp

(
− (s − ML)

2 Ld

2kBTχ(L)

)

+ 1

2
exp

(
− (s + ML)

2 Ld

2kBTχ(L)

)]
, T < Tc, H = 0. (2.74)

The small value of PL(s ≈ 0) ∝ exp(−2Ld−1 fint/kBT ), where fint is the interfa-
cial tension of the system [2.70], measures the probability that the system moves
away from the region near +ML by the spontaneous creation of two interfaces of
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size Ld−1 to form a domain of negative magnetization spanning the system. By this
mechanism the system can pass from +ML to −ML and vice versa, see Fig. 2.12.
Since the observation time needed to observe these transitions increases with L as
PL(s = ML)/PL(s = 0), for large L such transitions cannot be seen during reasonable
observation times. Thus one does not sample the full symmetric distribution (2.74)
for which 〈s〉L = ∫ +∞

−∞ sPL(s)ds = 0, but rather only one half of it:

〈s〉′L =

∫ ∞

0
sPL(s) ds

∫ ∞

0
PL(s) ds

= 〈|s|〉L . (2.75)

When (2.74) is an accurate description of the actual distribution PL(s), the restricted
average 〈s〉′L coincides with the peak position ML , but due to deviations from the
Gaussian distribution in an actual simulation these quantities may differ from each
other. However, when extrapolated to the thermodynamic limit, all these quantities
should yield the spontaneous magnetization

lim
L→∞ ML = lim

L→∞〈|s|〉L = lim
L→∞〈s2〉1/2L = Msp. (2.76)

Of course, these relations are more convenient than using (2.69). Figure 2.13 illus-
trates the use of these relations,where only a single systemof size N = 243 was simu-
lated but the order parameter distribution in subsystems of different linear dimensions
L < 24 was recorded, for several values of L simultaneously in one run [2.25, 2.71].
Similarly, the susceptibility can be estimated both from the fluctuation-dissipation
relation (relating it to magnetization fluctuations), and the half-widths Δs, or the
heights PL(0), PL(ML) of the peaks:

lim
L→∞

〈s2〉Ld

kBT
= lim

L→∞
P−2
L (0)Ld

2πkBT

= lim
L→∞

(Δs)2Ld

8kBT ln 2
= χ, T > Tc, (2.77a)

lim
L→∞

〈s2〉 − 〈|s|〉2
kBT

Ld = lim
L→∞

P−2
L (ML)Ld

8πkBT

= lim
L→∞

(Δs)2Ld

8kBT ln 2
= χ, T < Tc. (2.77b)

Equations (2.73) and (2.74) hold for L � ξ . In a practical calculation ξ is usually
not known, then the Gaussian character of the distribution is conveniently studied
by calculating the fourth-order cumulantUL [2.25] (or the equivalent quantity gL =
−3UL called the renormalized coupling constant [2.72])
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Fig. 2.13 Estimates of the spontaneous magnetization of the three-dimensional Ising model with
nearest-neighbor interaction on the simple cubic lattice at a temperature (kBT/J = 4.425) below
criticality (kBTc/J ≈ 4.51), where J is the exchange constant, see (2.1), as obtained from extrapo-
lating the size dependence of the position of the maximum (smax) and the moments 〈s2〉L and 〈|s|〉L
towards L−1 → 0, for subsystems of a system of size 243. The direct estimate for the magnetization
of the total system (MN ) is also included. (From [2.71])

UL = 1 − 〈s4〉L
3〈s2〉2L

. (2.78)

For T > Tc and L � ξ , one can show that UL decreases towards zero as UL ∝
L−d [2.25]. For T < Tc and L � ξ , one can show from (2.74) that UL tends to
U∞ = 2/3. For L � ξ , on the other hand, UL varies only weakly with temperature
and linear dimension, it stays close to the (universal but nontrivial) “fixed-point”
value U ∗.

This behavior of the cumulant makes it very useful for obtaining estimates of Tc
itself which are not biased by any assumptions about critical exponents [2.25]. One
may plotUL versus T for various L’s and estimate Tc from the common intersection
point of these curves. As shown below, finite-size scaling implies the existence of
such a common intersection point. Due to corrections to finite-size scaling, there
may be some scatter in the intersection points for different pairs (L , L ′) if one works
with very small linear dimension (Fig. 2.14). Nevertheless, the accuracy of this
“cumulant intersection method” is quite good. It has been applied to a variety of
models [2.13, 2.25, 2.29, 2.71–2.78] including sophisticated examples such as spin
glasses [2.77] andXYmodelswith cubic anisotropy [2.73]. Note also that the estimate
for the critical point of the 3d Ising model obtained by this technique on the Santa
Barbara special purpose computer [2.72], J/kBTc = 0.221650(±5), is competitive in
accuracy with the most extensive series expansion and Monte Carlo renormalization
group estimates [2.79] available, although the work in [2.72] is hampered by some
spurious finite-size effects due to pseudorandom numbers of bad quality, as shown
in related work done on different computers [2.80–2.82].
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Fig. 2.14 a Determination of the critical coupling β̃c of the φ4 model on the square lattice (2.43),
where parameters are renormalized as ã = (A + 2dC)2/B, β̃ = −C(A + 2dC)/B, for the partic-
ular choice ã = 2.50, and for various ratios UL/UL ′ , for pairs (L , L ′) as indicated in the figure.
Note the large scale of the abscissa to demonstrate the accuracy of this method. b Variation of
the order parameter ML defined as ML = 〈|∑N

i=1 φi/
√−(A + 2dC)/B|/N 〉 for the same model.

(From [2.13])

We now turn to the description of the distribution function PL(s) in the region
where L is not necessarily larger than ξ . The key idea is that PL(s), which is a function
of L , s, and ξ (which expresses the temperature dependence via ξ ∝ |1 − T/Tc|−ν ,
as noted above), does not depend separately on these three variables, but only on two
scaled combinations, L/ξ and sξβ/ν [2.25]:

PL(s) = ξβ/νP
(
L/ξ, sξβ/ν

) = Lβ/ν P̃
(
L/ξ, sLβ/ν

)
. (2.79)

Here the power-law prefactors are needed to ensure the normalization,

∫ +∞

−∞
dsPL(s) = 1,
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and in the last part of (2.79) we have used

sLβ/ν = (
sξβ/ν

)
(L/ξ)β/ν

instead of sξβ/ν as our second scaling variable. From (2.79), which should hold in
the limit L → ∞, ξ → ∞, but L/ξ finite, it is straightforward to derive the standard
finite-size relations [2.23, 2.24] analogous to (2.63), (2.64), and (2.67) by taking
suitable moments of the distribution,

〈|s|〉L = L−β/ν M̃(L/ξ), (2.80a)

χ ′(L , T ) ≡ Ld
(〈s2〉L − 〈|s|〉2L

)
/kBT = Lγ /νχ̃(L/ξ), (2.80b)

UL = 1 − χ̃4(L/ξ)

3
[
χ̃2(L/ξ)

]2 . (2.80c)

Here χ̃4(L/ξ) is related to the 4thmoment, 〈s4〉L ≡ L−4β/νχ̃4(L/ξ), and χ̃2(L/ξ)

to the second, 〈s2〉L ≡ L−2β/νχ̃2(L/ξ). In (2.80b) we have defined a function
χ ′(L , T ) which for T < Tc tends to the standard susceptibility χ in the thermo-
dynamic limit (where χ ≡ limH→0 limL→∞ ∂〈s〉L/∂H ), as is obvious from (2.77b),
while for T > Tc it does not. In fact, from (2.73) it is straightforward to show that
for T > Tc (remember limL→∞ χ(L) = χ )

lim
L→∞ χ ′(L , T ) = lim

L→∞ Ld
(〈s2〉L − 〈|s|〉2L

)
/kBT = χ

(
1 − 2

π

)
. (2.80d)

Thus χ ′ diverges with the same exponent as χ , but the critical amplitude is reduced
by a factor 1 − 2/π . This point is often confused in the literature, where sometimes
limL→∞ χ ′(L , T ) is taken as an estimate for χ above Tc, and sometimes the formula
χ = limL→∞ Ld

(〈s2〉L − 〈s〉2L
)
/kBT is used at all temperatures. This latter formula,

however, in the absence of a symmetry-breaking field makes sense only for T > Tc,
where 〈s〉2L ≡ 0 can be used, and then this formula reduces to (2.77a). For T < Tc,
on the other hand, in a Monte Carlo simulation for a finite system near Tc, 〈s〉2L is
not a useful quantity. For observation times which are much smaller than the ergodic
time τe, 〈s〉2L ≈ 〈|s|〉2L , which is close to the squared spontaneous magnetization
M2

sp (2.76), while for observation times which are much larger than τe, 〈s〉2L ≡ 0, and
for observation times of the order of τe one may get a rather erratic behavior where
〈s〉2L can take any value in between zero and 〈|s|〉2L , when the magnetization has
jumped back and forth between +〈|s|〉L and −〈|s|〉L just a few times. Now τe is of
order τmax at Tc, see (2.85)–(2.88) below, and much larger than τmax for T much less
than Tc, with τmax being the maximum “intrinsic” relaxation time. Note that for the
magnetization, τmax and the time τA considered in (2.54)–(2.72) are of the same order
of magnitude. Since we have to work with an observation time tobs � τA ≈ τmax,
below Tc we will necessarily encounter a temperature where tobs ≡ τe, and hence
〈s〉2L is meaningless there. Thus it is an inevitable consequence of symmetry breaking
that above Tc and below Tc in finite systems different fluctuation formulae must be



52 2 Theoretical Foundations of the Monte Carlo Method …

0 TTc

L

KBT X (L,T)

KBT X (L,T)

K
B
T

 X
(L

,T
)

tobs<<τe

tobs>>τe
tobs≈τe

Ld

Fig. 2.15 Schematic temperature variation of the normalized susceptibilities kBTχ(L , T ) and
kBTχ ′(L , T ) as defined in (2.80b) and via kBTχ(L , T ) ≡ Ld 〈s2〉L . For T → 0 there are no fluctu-
ations, thus 〈s2〉 = 〈|s|〉2 = 1 and hence kBTχ ′(L , T → 0) → 0 while kBTχ(L , T → 0) → Ld .
Outside the regime of the finite-size rounding, χ(L , T ) tends to the standard susceptibility χ for
T ≥ Tc, while for T < Tc it is χ ′(L , T ) that tends to χ . While the divergence of χ is rounded off
to a finite peak in the function Tχ ′(L , T ), the function Tχ(L , T ) is monotonically increasing for
decreasing T due to the onset of the order parameter. The dash-dotted curve illustrates the stan-
dard susceptibility formula Ld (〈s2〉L − 〈s〉2L ), which, unlike (2.80b), does not involve any absolute
value: for zero field this expression is not well defined for the temperature region for which the
observation time tobs is of the same order as the ergodic time τe, where erratic fluctuations therefore
occur. For L → ∞, this temperature region shrinks and ultimately coincides with Tc

used to extract the susceptibility of the infinite system with the correct prefactor, as
written down in (2.77a) and (2.77b). This behavior of the susceptibilities χ(L , T )

and χ ′(L , T ) is illustrated schematically in Fig. 2.15.
One immediately finds that the order parameter at criticality behaves as 〈|s|〉L ∝

L−β/ν , consistent with our previous result (2.72b). The “fixed point” value of the
cumulant is now interpreted as U ∗ = 1 − χ̃4(0)/3[χ̃2(0)]2.

Aswas the case for (2.63) and (2.64), for the percolation problem, (2.80a)–(2.80c)
form the basis for a study of critical properties of the infinite system, extracted
from the Monte Carlo results for finite lattices. Figure 2.16 shows another example
of data collapsing [2.13, 2.25, 2.27, 2.37, 2.71, 2.76, 2.82, 2.83]. Studying, for
instance, the order parameter ML = 〈|s|〉L for various L’s, we have a family of
curves (Fig. 2.14b). Multiplying ML by a factor Lβ/ν and the reduced temperature
|1 − T/Tc| = |1 − β̃c/β̃| by a factor L1/ν , the family of curves should collapse onto
the two branches (for T > Tc and T < Tc, respectively) of the scaling function M̃ .
The figure already demonstrates the disadvantage of thismethod: one simultaneously
has to fit three parameters {Tc, 1/ν, β/ν}, but since one often includes Monte Carlo
“data” for which neither L nor ξ are very large, there are systematic corrections
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Fig. 2.16 Plot of MLLβ/ν

versus (1 − β̃c/β̃)L1/ν for
the φ4 model on the square
lattice with the parameter
choice α̃ = 2.5, βc = 0.428
(for the definition of
parameters see Fig. 2.14) and
L = 5, 10, 20, and 60. Finite
blocks with periodic
boundary conditions were
used throughout, as in
Fig. 2.14. Upper part, the
choice of exponents
β = 0.125, ν = 0.80. Lower
part, the standard Ising
choice (β = 0.125,
ν = 1.00). (From [2.13])
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to the asymptotic finite-size scaling expressions, and complete superposition of the
curves is prevented. Moreover, there is not really a unique “fit”, and hence the actual
accuracy of the method is somewhat hard to ascertain. Nevertheless it has often
yielded useful results (e.g., [2.83, 2.84]).

Alternative phenomenological renormalization methods based on (2.80) derive
critical exponents from relations such as (L ′ = bL with a scale factor b > 1) [2.25]

1

ν
= ln (∂UbL/∂UL)

ln b

∣∣∣∣
U ∗

,

γ

ν
= ln [χ(bL , Tc)/χ(L , Tc)]

ln b
. (2.81)

One advantage of this method is that Tc and the exponents 1/ν, γ /ν are estimated
independently of each other; another advantage is that one can analyze systematic
errors due to corrections to finite-size scaling. At Tc such corrections are, to leading
order, additive terms with less strongly divergent exponents
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χ(L , Tc) = Lγ /νχ̃(0)(1 + χ corrL−xcorr + · · · ), (2.82)

χ corr being another amplitude factor and xcorr the leading correction exponent. Now
(2.81) is replaced by

ln [χ(bL , Tc)/χ(L , Tc)]

ln b
= γ

ν
− χ corrL−xcorr

ln b
(1 − b−xcorr ) + · · · . (2.83)

Thus, plotting estimates for γ /ν (or 2β/ν, cf. [2.25, 2.71]) versus 1/ ln b, one obtains
for each L a different curve, which for (ln b)−1 → 0 must extrapolate linearly to the
same value of γ /ν. The disadvantage, however, of this method is that extremely good
statistical accuracy of the results for χ(L , Tc) is required, otherwise the procedure is
not applicable. Landau and Binder [2.75] have applied this technique to a nontrivial
two-dimensional example, the Ising antiferromagnet with nearest and next-nearest
neighbor interactions Jnn, Jnnn (Fig. 2.17), which exhibits a transition to a layered
antiferromagnetic structure for Jnnn/Jnn > 1

2 , belonging to the universality class of
the XY model with cubic anisotropy [2.85], with nonuniversal critical exponents.
The exponent estimates which can be obtained are comparable in accuracy to results
obtained fromMonteCarlo renormalization group (MCRG) [2.86],MonteCarlo data
collapsing [2.83], high-temperature series extrapolations [2.87] and transfer matrix
calculations for finite strips [2.88], see Fig. 2.18. The method is definitely superior

Fig. 2.17 a Square lattice
with exchange Jnn between
nearest neighbors (full lines)
and exchange Jnnn between
next nearest neighbors
(broken lines). b, c Spin
arrangements in the layered
antiferromagnetic structure,
where ferromagnetically
aligned rows of up spins
alternate with
ferromagnetically aligned
rows of down spins. These
rows can be oriented in the
x direction (b) or in the
y direction (c). These two
orderings are always
degenerate with each other
and hence should be
considered as the two
components of
a two-component order
parameter (ψx , ψy)

Jnn

Jnnn

(a)

(b)

(c)
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Fig. 2.18 a Variation of critical parameters with ln b = ln(L/L ′) for the Ising antiferromagnet on
the square lattice with R ≡ Jnnn/Jnn = 0.65. Data are for L ′ = 4 (◦), L ′ = 8 (×), and L ′ = 12 (�);
finite blocks with periodic boundary conditions were used throughout. (From [2.75]). b Variation
of the correlation length exponent (upper part) and critical temperature Tc (lower part) with R.
(circles) Results of phenomenological renormalization, as described in (a); (triangles) Monte Carlo
“data collapsing” results of [2.83]; (crosses)MCRG results of [2.86]; (filled circles) series expansion
results of [2.87]; (squares) transfer-matrix renormalization [2.88]; (inverted triangles) real-space
renormalization group results [2.89]. (From [2.75])

to standard real-space renormalization group methods [2.89], but clearly involves
a major effort in computing time. This is also true for the MCRG method, although
it seems that there good results are obtained with somewhat smaller statistical effort,
even in three dimensions [2.79]. This phenomenological renormalizationmethodwas
also tried for the nearest-neighbor three-dimensional Isingmodel, usingMonte Carlo
results obtainedwith the Ising special purpose computer [2.72]. It was claimed [2.72]
that the asymptotic critical regime where finite-size scaling holds is only reached for
L > 24, but it is now clear [2.80–2.82] that this claim is wrong, due to inappropriate
pseudorandom numbers used in [2.72], and the approach to the thermodynamic limit
is very smooth also in the three-dimensional Ising model. Still, a highly accurate
phenomenological renormalization study of the three-dimensional Ising model has
not been done before 1991 [2.89a].

A variant of this phenomenological renormalization technique [2.90] avoids the
use of the fourth-order cumulant UL , (2.78) and (2.80d), and works with χ(L , T )

only. One then forms the ratio considered in (2.83), namely the function ϕL ,L ′(T )
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ϕL ,L ′(T ) ≡ ln
[
χ(L ′, T )/χ(L , T )

]

ln(L ′/L)
(2.84)

for two pairs of sizes, (L , L ′) as well as (L ′, L ′′). The functions ϕL ,L ′(T ) and
ϕL ′,L ′′(T ) should thus intersect at Tc, and the intersection point should yield γ /ν

if corrections to finite-size scaling can be neglected [2.90]. This method has been
applied successfully to the two-dimensional ANNNI model, where a transition to an
incommensurate floating phase occurs [2.90].

At this stage, it is extremely helpful if the reader turns to Sect. 3.4.1 and works
out Exercises 3.37, 3.38, and 3.41.

2.3.5 Finite-Size Behavior of Relaxation Times

So far, we have considered only static quantities and analyzed the respective finite-
size effects, but also the critical singularity of the “intrinsic” relaxation time τ

τ ∝ ξ z ∝ |1 − T/Tc|−νz (2.85)

exhibits a finite size rounding, again controlled by the rule that the rounding sets in
when L is comparable to ξ , and hence the maximum “intrinsic” relaxation time is

τmax ∝ Lz (T = Tc). (2.86)

From (2.56) and (2.86) we now realize why it is so difficult to obtain accurate results
at Tc, where the statistical error of the magnetization takes on its maximum value

〈(δM)2〉Tc = 2τmax

tobs

(〈M2〉Tc − 〈|M |〉2Tc
)

= 2τmaxχ
′
maxkBTc

tobsLd
∝ Lz+γ /ν−d

tobs
. (2.87)

Since on a serial computer the CPU time for one Monte Carlo step per site increases
as Ld , the CPU time needed to obtain data for 〈|M |〉 at Tc with a given constant
accuracy increases as Lz+γ /ν ≈ L4, independent of d for d ≤ 4. Thus an increase
by a factor of 10 in the linear dimension would require 104 more computing time!
Thus we see why vector processors and parallel computers, for which there is less
increase in CPU time needed for one Monte Carlo step per site with increasing
linear dimension, are indispensable for the Monte Carlo simulation of very large
lattices at Tc.

For T ≥ Tc, the “intrinsic” order parameter relaxation time τ considered in
(2.85) and (2.86) is in fact the absolutely largest relaxation time in the system.
For T < Tc, this is not true due to the existence of the “ergodic” time τe. As was
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mentioned after (2.74), this ergodic time is proportional to PL(s = ML)/PL(s = 0) ∝
exp(2Ld−1 fint/kBT ). Since near Tc, fint/kBT ∝ ξ−(d−1), we can write a scaling law
for the ergodic time as follows:

τe ∝ Lz exp
[
const(L/ξ)d−1] , T < Tc. (2.88)

This relation has been verified by Miyashita and Takano [2.91], while (2.86) was
studied in careful work by Wansleben and Landau [2.92].

Below Tc, in addition to the intrinsic relaxation time τ (2.85), which describes
how a small deviation δM from the spontaneous magnetization Msp relaxes, and
to the ergodic time τe, describing the time needed to flip over the sign of the total
magnetization, various nonlinear relaxation times of the magnetization are also of
interest. If we start the system in a fully aligned ferromagnetic state, the relaxation
times τ

(nl)
M , τ

(nl)
E of themagnetization, energy, etc., needed to relax to their equilibrium

values can be shown to diverge near Tc according to a power law different from
(2.85) [2.93, 2.94]:

τ
(nl)
M ∝ (1 − T/Tc)

−(νz−β) , (2.89a)

τ
(nl)
E ∝ (1 − T/Tc)

−(νz−1+α) , (2.89b)

where α is the critical exponent of the specific heat [2.69]. On the other hand, if
we start the system in a disordered configuration and no symmetry breaking field
is present, ordered domains form (Fig. 2.19) whose linear dimensions l(t) grow
according to a power law [2.5, 2.46]

l(t) = (Ωt)x , Ω ∝ (1 − T/Tc)
νz−ν/x . (2.90)

Now with such a “disordered start” in the regime of the ordered phase the times to
reach equilibrium are at least of the order of tL defined by

l(tL) ≡ L , i.e., tL = Ω−1L1/x ∝ τ(L/ξ)1/x ∝ ξ z(L/ξ)1/x . (2.91)

While the times τ
(nl)
M , τ (nl)

E are very small if one works at T far below Tc, the time tL
is still rather large since x = 1

2 in the nonconserved kinetic Ising model [2.5, 2.46],
and hence tL ∝ L2. In addition, this time tL is only a lower bound to establish true
equilibrium: it only says that domains with sizes comparable to the system linear
dimension are present. There is no guarantee that the system exists in a monodomain
state. Often one finds [2.68, 2.95], however, that the system after the time tL is in
a state with a few frozen-in domain walls oriented parallel to a surface of the system,
such that each wall is connected to itself via the periodic boundary condition. It then
may take an impractically long time for the frozen-in domain walls to disappear
from the system, particularly in three-dimensional systems at temperatures below
the interface roughening transition temperature [2.96]. This consideration shows that
for the Monte Carlo study of ordered phases it is advisable to choose an appropriate
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(b)(a)

(c)

Fig. 2.19 Snapshot pictures of domains at various times after a start in a completely random initial
configuration

initial condition, such as a fully ordered configuration. In systems where the detailed
nature of the ordering is unknown, such as in spin glasses [2.41], a study of the low
temperature phase is very difficult.
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2.3.6 Finite-Size Scaling Without “Hyperscaling”

The finite-size scaling theory described so far, where one scales the linear dimen-
sion L with the correlation length ξ , rests on the validity of the hyperscaling relation
between critical exponents,dν = γ + 2β [2.25, 2.76].Consequently, finite-size scal-
ing in its standard form does not hold when hyperscaling is violated, which happens,
for instance, in systems above their marginal dimensionality d∗ where mean field
predictions for critical exponents become valid (e.g., d∗ = 4 for Ising models [2.69],
d∗ = 6 for percolation [2.60]). Thenwith fully periodic boundary conditions in an Ld

geometry a simple modified form of finite-size scaling holds [2.76], the correlation
length ξ being replaced by a thermal length lT defined by [2.76]

ldT = kBTχM−2 ∝ |1 − T/Tc|−(γ+2β) = |1 − T/Tc|−2, (2.92)

where in the last equality the mean field exponents γ = 2β = 1 were inserted.
Equation (2.92) is understood by noting that (2.74) is true also for d > d∗, and
the argument of the exponential function can be written as

(s ± M)2Ld

2kBTχ
= (s/M ± 1)2

2

Ld

kBTχM−2
= (s/M ± 1)2

2

(
L

lT

)d

, (2.93)

which shows that L scaleswith lT. For d < d∗, lT ∝ ξ but for d > d∗, ξ has a different
temperature dependence. The general scaling behavior replacing (2.79) is

PL(s) = (1 − T/Tc)
−β P ′ (L/ lT, s(1 − T/Tc)

−β
)

= Ldβ/(γ+2β) P̃ ′ (L/ lT, sL
dβ/(γ+2β)

)
, (2.94)

i.e., the exponent 1/ν in (2.79)–(2.83) is replaced by the exponent d/(γ + 2β), the
inverse of the exponent of the thermal length lT. Equation (2.94) has been verified for
the five-dimensional Ising model [2.76] where 1/ν = 2 while d/(γ + 2β) = 5/2.

2.3.7 Finite-Size Scaling for First-Order Phase Transitions

Finally, we turn to finite-size effects at first-order phase transitions [2.97]. In an
infinite system, a first-order transition is characterized by a delta function singularity,
see Fig. 2.20. For example, if the transition is driven by temperature this singularity is
the latent heat; in an Isingmagnet, a first-order transition occurs for T < Tc at H = 0
on variation of the field, and hence we get a delta-function in the susceptibility.
In finite systems, of course, these delta function singularities are again rounded
off [2.98–2.104]. One can understand this behavior most simply by generalizing
(2.74) to include the dependence on the magnetic field [2.102]: the weights of the
two peaks are no longer equal

(
1
2

)
, but rather weighted according to the Zeeman
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Fig. 2.20 Schematic variation of the specific heat and internal energy with temperature T near
a first-order transition at Tc (left part). The delta function singularity represents the latent heat
E+ − E−. Also shown is the variation of the susceptibility and the magnetization as a function of
field (right part). Now the delta function singularity represents the magnetization jump 2Msp (full
curves)

energy Boltzmann factors exp(±HMLLd/kBT ). In addition, one must take into
account that for H �= 0 the Gaussian peaks no longer occur at s = ±ML but rather
at s = ±ML + χ(L)H . This yields

PL(s) = Ld/2 [2πkBTχ(L)
]−1/2

×
⎛

⎝
exp

(
HML Ld

kBT

)
exp

(
− (s−ML−χ(L)H)2Ld

2kBTχ(L)

)

exp
(
HML Ld

kBT

)
+ exp

(
−HML Ld

kBT

)

+
exp

(
−HML Ld

kBT

)
exp

(
− (s+ML−χ(L)H)2Ld

2kBTχ(L)

)

exp
(
HML Ld

kBT

)
+ exp

(
−HML Ld

kBT

)

⎞

⎠ . (2.95)

This approach yields for the magnetization
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〈s〉L = χ(L)H + ML tanh

(
HMLLd

kBT

)
(2.96)

and the susceptibility

χ(H, T, L) =
(

∂〈s〉L
∂H

)

T

= χ(L) + M2
L

(
Ld/kBT

)

cosh2
(
HMLLd/kBT

) . (2.97)

Equation (2.97) shows that the delta function singularity which occurs for H = 0 in
the limit L → ∞, for finite L is smeared out into a peak of height proportional to
Ld and of width ΔH proportional to L−d .

It is important to realize, however, that these considerations apply only if one
records the true equilibrium behavior of the system (i.e., applies observation times
exceeding the ergodic time). For too short observation time one would observe
a single-peak structure for PL(s) rather than the correct double-peak structure
described by (2.95). The ordered state of the Ising ferromagnet then is metastable
even in a weak field of direction opposite to the magnetization. The reader who has
done Exercise 3.43 of Chap. 3 and who has tried to reproduce Fig. 2.21 will have
noticed this already. Thus (2.95)–(2.97) are practically useful only for rather small
systems. Figure 2.21 shows that the present description is in quantitative agreement
with simulation results for the two-dimensional nearest-neighbor Ising square lattice,
when the spontaneous magnetization Msp (ML = Msp is taken equal to the sponta-
neous magnetization, independent of L , for L � ξ ) is known exactly [2.105], and
no adjustable parameters exist whatsoever.

The field-driven transition in the Ising model is a particularly simple case, since
the model possesses a symmetry χ(H, T, L) = χ(−H, T, L) even for finite L , and
hence the transition is rounded but not shifted by the finite size of the system; it still
occurs at H = 0. A more general case, which is also more interesting for practical
applications, occurs for first-order transitions driven by temperature from an ordered
phase at low temperature to a disordered phase at higher temperatures. Obviously,
there is no symmetry between the high temperature and low temperature phases,
and then we also expect a shift of the effective transition temperature Tc(L) (where
the rounded peak of the specific heat representing the smeared delta function of the
latent heat has its maximum Cmax

L ) relative to the true transition temperature Tc(∞),

Tc(L) − Tc(∞) ∝ L−λ, Cmax
L ∝ Lαm , δT ∝ L−θ , (2.98)

where we have defined three exponents λ, am, θ for the shift, the height of the peak,
and the temperature interval δT over which it is rounded. It turns out, however, that
these finite-size effects can again be understood by a simple discussion in terms of
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Fig. 2.21 a Susceptibility
χ(H, T, L) of
nearest-neighbor Ising
square lattices at
kBT/J = 2.1 plotted versus
magnetic field for various
L’s. b Same data replotted in
scaled form, χ(H, T, L)/L2

plotted versus scaled field
HL2/J . Arrow indicates the
asymptotic value M2

sp J/kBT
calculated from the exact
solution [2.105]. Note that
kBTc/J =∼ 2.269 for the
Ising model [2.105]. Broken
curve is the scaling function
of (2.97), the additive
correction term χ(L) being
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thermodynamic fluctuation theory, similar to (2.95)–(2.97). We just have to extend
(2.33) to the case where we have a superposition of two Gaussians [ΔT = T −
Tc, Tc ≡ Tc(∞)] [2.104]

PL(E) ∝ a+√
C+

exp

(
− (E − E+ − C+ΔT )2Ld

2kBT 2C+

)

+ a−√
C−

exp

(
− (E − E− − C−ΔT )2Ld

2kBT 2C−

)
, (2.99)
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where the specific heat in the infinite system near Tc behaves as

lim
T→T−

c

C(T ) = C−, lim
T→T+

c

C(T ) = C+,

and the weights a+, a− are expressed in terms of the degeneracies q+, q− of the two
phases and their internal energies E+, E− as [2.104]

a+ = q+ exp

(
ΔT (E+ − E−)Ld

2kBTT c

)
,

a− = q− exp

(
−ΔT (E+ − E−)Ld

2kBTT c

)
. (2.100)

From (2.99) and (2.100) it is straightforward to obtain the energy 〈E〉L and specific
heat C(T, L) as

〈E〉L = a+E+ + a−E−
a+ + a−

+ ΔT
a+C+ + a−C−

a+ + a−
, (2.101)

C(T, L) = ∂〈E〉L
∂T

= a+C+ + a−C−
a+ + a−

+ a+a−Ld

kBT 2

[
(E+ − E−) + (C+ − C−)ΔT

]2

(a+ + a−)2
. (2.102)

From (2.102) it is obvious that the maximum of the specific heat occurs at

Tc(L) − Tc
Tc

= kBTc ln
[
(q−/q+)

]

E+ − E−
1

Ld
(2.103)

and has a height

Cmax
L ≈ (E+ − E−)2

4kBT 2
c

Ld + C+ + C−
2

. (2.104)

Since the temperature region δT over which rounding of the delta function peak
occurs is given just by taking the argument of the exponential functions in (2.100)
of order unity, δT ≈ 2kBT 2

c /[(E+ − E−)Ld ], we conclude that the exponents λ, am ,
θ defined in (2.98) are all equal to the dimensionality:

λ = am = θ = d. (2.105)

Thus, since there is no diverging characteristic length towhich the linear dimension L
could be compared at a first order transition, it is simply the volume Ld that controls
the size effects [2.98–2.104]. Figure 2.22 shows results obtained [2.104] for the
q-state Potts model [2.106] with q = 10, whose Hamiltonian is
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HPotts = −J
∑

〈i, j〉
δSi S j , Si = 1, 2, . . . , q. (2.106)

For the square lattice E+, E− and C+,C− can be obtained from exact solu-
tions [2.107] and hence a nontrivial test of (2.99)–(2.105) is possible. It is seen
that the phenomenological theory outlined in (2.99)–(2.105) does in fact account
for the behavior of the Monte Carlo results nicely. Again some “homework” by the
reader (Exercise 3.50) is strongly recommended.

This finite-size scaling theory for first-order transitions also leads to a criterion
for systematically distinguishingfirst-order transitions fromsecond-order transitions.
When one computes a quantity VL defined as [2.104]

VL = 1 − 〈E4〉L
3〈E2〉2L

, (2.107)

one finds that VL takes a minimum value Vmin
L at the effective transition temperature

Tc(L). One can show that for a second-order transition limL→∞[ 23 − Vmin
L ] = 0,

even at Tc, while at a first-order transition the same limit measures the latent heat
|E+ − E−|:

lim
L→∞

(
2

3
− Vmin

L

)
= 1

3

(E+ − E−)2(E+ + E−)2

(2E+E−)2
. (2.108)

Figure 2.23 shows [2.104] that indeed the behavior of VL for q = 2, 3 (where the
transition is of second order [2.107]) is very different from the behavior of VL for
q = 10, where the transition is distinctly first order.

2.3.8 Finite-Size Behavior of Statistical Errors and the
Problem of Self-averaging

As a last topic connected with size effects we now consider the finite-size behavior of
statistical errors [2.5]. Supposewe observe a quantity A in n statistically independent
observations, and calculate its error from [cf. (2.55)]

Δ(n, L) =
√(〈A2〉L − 〈A〉2L

)
/n, n � 1. (2.109)

We now ask, does this error Δ(n, L) of the quantity A reduce to zero if we make
the simulated system larger and larger, i.e., L → ∞? If this does not happen and
Δ reaches an L-independent nonzero limit, we say A exhibits lack of self-averaging.
If the errorΔ reduces to zero, however, wemay ask, will the same error be obtained if
we simply study larger systems but with less statistically independent observations,
such that the total effort in computing time (on a serial computer) is the same. That
is, we compare calculations for two sizes L and L ′ = bL , with a scale factor b > 1,
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and record n observations for the smaller systems and n′ = b−dn observations for
the larger system. Milchev et al. [2.5] have introduced the notion that a system is
strongly self-averaging if the error satisfies the relation

Δ(n, L) = Δ(n′, L ′) = Δ(b−dn, bL). (2.110)

From (2.109) and (2.110) we see that strong self-averaging holds only if the fluctu-
ation satisfies the relation

〈A2〉L − 〈A〉2L ∝ L−d . (2.111)

If we consider a situation where

〈A2〉L − 〈A〉2L ∝ L−x1 , 0 < x1 < d, (2.112)

the quantity A is still self-averaging but not strongly self-averaging [2.5].
Suppose now that the quantity A observed in a simulation is the density of a basic

extensive quantity, e.g., energy per site (E) or magnetization per site (M), and we
consider for the moment an equilibrium state away from criticality or phase coexis-
tence. Then the distribution of δA = A − 〈A〉 for L → ∞ is Gaussian,

PL(δA) = Ld/2(2πCA)
−1/2 exp

[−(δA)2Ld/2CA
]
, (2.113)

cf. (2.33) and (2.73), for example. From (2.113) we immediately find that the fluc-
tuation considered in (2.111) is related to the parameter CA controlling the width of
the distribution (if A = M then CA = kBTχ , if A = E then CA = kBT 2C , etc.):

〈(δA)2〉 = 〈A2〉L − 〈A〉2L = L−dCA. (2.114)

Thus if limL→∞ CA exists, A is indeed strongly self-averaging. This property hence
holds for quantities such as E , M , etc., for L � ξ .

The situation differs drastically, however, if we wish to sample quantities which
are not spatial averages of a simple density (such as E, M, . . .) but quantities which
follow from fluctuation relations (such as C , χ , . . .), which we obtain from the
sampling of E , M using (2.114). We now consider the error of this procedure, again
using (2.109) but choosing (δA)2Ld rather than A as the variable under consideration:

Δ(n, L) = Ldn−1/2
√

〈(δA)4〉L − 〈(δA)2〉2L . (2.115)

Since the reduced fourth-order cumulant, defined in analogy to (2.78) as

U (A)
L ≡ 3〈(δA)2〉2L − 〈(δA)4〉L

3〈(δA)2〉2L
(2.116)

vanishes for the Gaussian distribution, we obtain from (2.115)
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Δ(n, L) = Ldn−1/2〈(δA)2〉L
√
2 = CA

√
2/n. (2.117)

Consequently, the relative error of CA is independent of L and depends on n
only [2.5],

Δ(n, L)/CA = √
2/n. (2.118)

Thus, increasing L at fixed n will strongly improve the accuracy of quantities such
as E and M , but nothing is gained with respect to the accuracy of χ , C , etc. Thus,
it is more economical to choose the smallest size which is still consistent with the
condition L � ξ and to increase n rather than L to improve the accuracy.

This consideration in turn shows that for large systems it may be better to obtainχ ,
C , etc. from numerical differentiation rather than from the sampling of fluctuations.
For completeness, let us consider this point explicitly. We obtain the susceptibility χ

from the field dependence of the magnetization:

χ ∼= [M(H + ΔH) − M(H)] /ΔH, (2.119)

where H has to be chosen such that nonlinear effects are negligible. In order to use
(2.119) we must require that the errors of M(H) and of M(H + ΔH) are much
smaller than the difference χΔH :

Δ(n, L) =
√
kBTχ/nLd � χΔH, i.e. 1 � nLd

(
ΔH

kBT

)2

kBTχ. (2.120)

The relative error of χ now becomes

Δχ

χ
∼=

√
2
Δ(n, L)

ΔHχ
= √

2
kBT

ΔH

1√
kBTχnLd

; (2.121)

the factor
√
2 accounts for the fact that the errors of M(H) and M(H + Δ) are sta-

tistically independent. Since the error is thus proportional to (nLd)−1/2, the suscep-
tibility determined from a derivative of the magnetization is strongly self-averaging.
A corresponding consideration holds for the specific heat found as a temperature
derivative of the internal energy [2.5].

In the critical region, however, L � ξ does not hold; the distributions of the order
parameter (magnetization M in an Ising ferromagnet) and energy are no longer
Gaussian. Instead descriptions such as (2.79) and (2.80) hold. We now find

ΔM =
√(〈M2〉 − 〈|M |〉2)/n = L−β/νn−1/2

√
χ̃ (L/ξ). (2.122)

At Tc, where the correlation length ξ (of the infinite system) is infinite, χ̃ (0) is
a finite constant. Thus, (2.122) is an example of self-averaging of the weak rather
than the strong form (x1 = β/ν is much smaller than d). Using (2.122) to judge
the necessary simulation effort one must take into account, of course, that a time of
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order Lz (2.86) must elapse between two states in order that they are statistically
independent, as shown by (2.87). For the error of the susceptibility χ sampled from
magnetization fluctuations, one finds from (2.80) and (2.116) that there is again lack
of self-averaging,

Δχ

χ
= n−1/2

√
2 − 3UL(L/ξ). (2.123)

We thus recognize a structure generalizing (2.118), but now the constant
√
2 is

replaced by the smaller quantity
√
2 − 3UL(L/ξ).

For the singular part of the energy, δE ≡ E − E(Tc), the description similar to
(2.79) reads

PL(δE) = L(1−α)/ν P̃(E)(δEL
(1−α)/ν, L/ξ), (2.124)

with P̃(E) a suitable scaling function. From (2.124) one obtains the specific heat as

C = Ld
[〈(δE)2〉L − 〈δE〉2L

]
/kBT

2 = Lα/νC̃(L/ξ)/kBT
2. (2.125)

For the error of the energy one now obtains again a weak form of self-averaging with
x1 = (1 − α)/ν,

Δ(δE) = n−1/2L−(1−α)/ν

√
C̃(L/ξ), (2.126)

while for the error of the specific heat a formula analogous to (2.123) applies. As
discussed in [2.5], these considerations can be carried over to nonequilibriumMonte
Carlo calculations, such as the study of domain growth kinetics [2.46]. We also
emphasize that the consideration presented in (2.113)–(2.118) for the errors in impor-
tance sampling is essentially the same as that already encountered in our discussion
of the simple sampling errors for random walks (2.25)–(2.29).

2.4 Remarks on the Scope of the Theory Chapter

In this chapter we have summarized the main aspects of both “static” (simple sam-
pling) Monte Carlo methods (where different system configurations are generated
that are statistically independent of each other) and “dynamic” (importance sam-
pling) Monte Carlo methods. The former have been illustrated with applications to
problems such as random and self-avoiding walks, percolation transitions, etc., the
latter have been illustrated with applications to lattice problems, with both discrete
degrees of freedom (Ising models, Potts models, etc.) and continuous degrees of
freedom (XY magnets, the φ4 model, etc.). We have tried to indicate how simula-
tion programs devoted to such applications are organized, and how the resulting
Monte Carlo “data” are analyzed. We have discussed in some detail the limitations
of these methods due to finite-size effects and due to finite observation time effects,
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and have discussed the so-called “statistical errors” from various points of view. We
have shown that a detailed analysis of finite-size effects in terms of finite-size scal-
ing theories provides useful information on both second-order and first-order phase
transitions. We have also mentioned the application of the Monte Carlo method to
studying dynamic phenomena, but have concentrated on static properties here; simi-
larly, the emphasis has been on “bulk properties”, and studies of interfaces, surfaces,
local properties near defects, etc., have been left aside.

With this restriction in the scope of this book, important problems, such as
how one deals with the simulation of quantum-mechanical problems rather than
(quasi-)classical Hamiltonians, how one estimates entropy and free energy from
importance sampling Monte Carlo, etc., or the analysis of critical and multicritical
phenomena with theMCRGmethod, could not be treated in this chapter and we refer
the interested reader to the later chapters in this book, and the references contained
therein. We do hope, however, that the present chapter provides a useful guide to
the literature for newcomers to the field, enabling them to get started with a few
simulations for their own physics problems, and leaving them with the impression
that Monte Carlo simulation is a very rich method, which makes interesting contacts
with many fundamental aspects of statistical physics, and at the same time is a very
versatile and useful tool.



Chapter 3
Guide to Practical Work with the Monte
Carlo Method

The guide is structured such that we proceed from the “easy” simulationmethods and
algorithms to the more sophisticated. For each method the algorithms are presented
by the technique of stepwise refinement. We first present the idea and the basic
outline. From then on we proceed by breaking up the larger logical and algorithmic
structures into smaller ones, untilwe have reached the level of single basic statements.
Sometimes we may elect not to go to such a depth and the reader is asked to fill in
the gaps.

Since this is a guide to computational physics we feel the need for some general
remarks on programming. The technique of stepwise refinement is also useful in
actual applications. It introduces a thinking and programming discipline which tends
to reduce thenumber of (logical) errorsmade.Let us elaborate a little on this. Fromour
own experience we know that nothing is more catastrophic than an untidy program.
Bugs may be hidden under untidiness. Though, even in tidy programs there may,
unfortunately, be bugs.

Untidy programs may reflect a wild sort of thinking where many little ideas are
simply piled up. It is like building a bridge across a river by throwing stones more
or less at random into the river. Between each pair of stones we put a statement so
that eventually one is able to cross the river. Such a construction is, however, very
vulnerable.

Using stepwise refinement for an algorithm we are forced to invent headings for
parts of the algorithm and headings for the parts within the parts, as guidance. These
are also extremely useful tools for the documentation of the actual program. They
come in handy when the program is turned over to a collaborator. If the program is
properly documented the colleague will not feel the urge to redo the entire program
in order to understand it and trust it.

Interspersed with the text are exercises. These exercises are an integral part of this
guide. Without them the whole idea of learning the simulation methods presented in
Chap. 2 should be discarded.
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There are four different kinds of exercises. Exercises which are marked with �,
e.g.,
� Exercise 3.1,
are considered a vital part of the guide. Without doing these exercises an under-
standing of the material can hardly be reached. They are a “must”. Usually they
follow immediately after an important step in the development of an argument or an
algorithm which has been presented. The reader should not move on until such an
exercise has been completed. To mark this even more clearly we have put a

STOP

sign after such an exercise.
The second kind of exercises are those marked with !, e.g.,
! Exercise 3.2.

Such exercises are also considered vital to the guide. In these the material presented
so far is approached from a slightly different angle. Doing them contributes a great
deal to the understanding and the reader is asked to work them out. In most cases
they involve variations of an algorithm worked out before either in the text or in one
of the � exercises. They usually require some changes to an existing program.

Apart from the regular exercises,which are notmarked specifically and are entirely
optional, there is a fourth type of exercise marked with a star, e.g.,

� Exercise 3.24.
These exercises present problemswhich aremore of a research type and can be safely
omitted without losing out on the understanding of the material.

In this guide we will exhibit the algorithms in a pseudo-programming language.
This pseudo-programming language is very similar to C, PASCAL, etc. Due to their
structure the algorithmswhich will be discussed present themselves in amore natural
and elegant form in this language than in a programming language like FORTRAN.
The choice of an artifical language rather than a language in common use also high-
lights the algorithms themselves: the idea is not buried in a maze of programming
statements.

The language is more or less self-explanatory and should be understood by any-
bodywho has experience of at least one computer language. To illustrate the language
consider Example 3.1. It simulates throwing a dice. The dice has six faces and we
define an integer-valued vector with six components. It is understood that initially
the components are zero. We throw the dice N times, as indicated by the “do” loop.
For each try we choose at random a number from the set {1, 2, 3, 4, 5, 6}. In the case
that the drawn face is “1” we add a one to the occurrences of face 1, and similarly
for the other faces. After N tries have been made we can analyze how often any
face appeared in the sample. The statement analyze-dice-face stands for a block of
statements similar to what is inside the “begin end” for the “do” loop.
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Example 3.1

integer dice-face(1:6);
do i := 1 to N
begin
id := random(1, 2, 3, 4, 5, 6);
dice-face(id) := dice-face(id) + 1;

end
analyze-dice-face;

It is our experience that most students taking a course in computer simulations
know at least the programming language PASCAL. It should therefore be no problem
to understand the algorithms and to program them, for example in PASCAL. Onmost
personal computers the language PASCAL is quite efficiently implemented. The use
of PASCAL on personal computers has been found to be very successful for teaching
purposes. All the algorithms have been tested and run on personal computers. Those
who undertake to run the programs on a personal computer will very soon run up
against limitations on speed and storage, but for teaching purposes, and sometimes
even for research, we find them sufficient in their capabilities.

As already mentioned, the algorithms in this guide are given in a pseudo-
programming language. However, we felt that some of the algorithms ought to be
given in a “straight” form because while using this guide people sometimes had
difficulty in converting the algorithmic idea into a “real” programming language.
The conversion is not so trivial at all! It requires a good understanding and working
knowledge of the programming language.

In order to overcome this problem, some of the algorithms presented here are
given in the Appendix in an executable form. At this point a decision had to be made
as to the programming language. As pointed out above, many students start out by
learning PASCAL. For teaching purposes this language is most suitable. However,
in practice, i.e., when actually doing large scale simulations, in most cases these
days the programming language C is used. Therefore some of the algorithms were
programmed in C and listings of these are given in the Appendix. For those who
prefer Java or Python, etc., it should be no problem to convert the algorithms given
in the text into an executable form.

3.1 Aims of the Guide

In Chap. 2 we introduced concepts for the numerical treatment of complex physics
problems. In this part we want to fill the abstract concepts with life. We want to
understand the concepts more deeply and apply the concepts to problems.
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The problems we have chosen for this guide are very elementary. Elementary here
does not mean trivial! Indeed, the problems presented here are of a very fundamental
nature and are very important for physics. Not just for physics itself, but also for
computational physics. They represent a cross section of statistical mechanics prob-
lems. Of course, the space in this text is limited and it is impossible to select a broad
cross section. The main criterion for the selection of a problem was the didactical
value for the application of the numerical concept to the problem.

Basically three approaches to numerically solving a problem in statisticalmechan-
ics have been presented:

• Simple sampling
• Biased sampling
• Importance sampling

In a sense, the order inwhich they are given indicates the increasing complexity of the
concepts. They are by nomeans the only possible concepts.Many other concepts have
been developed, such as umbrella sampling. Those interested in going beyond the
concepts presented here are directed to the general references given at the beginning
of the list of references.

The three concepts mentioned above are, however, by far the most prevalent ones
in use. Not only that, they are also by far the most pedagogical concepts. Also, since
this text is meant as an introduction to Monte Carlo simulation methods, we do not
think that more complicated concepts should be elaborated upon here.

In the simple sampling method a given problem is approached in the most brutal
way. Let us, for the moment, consider an example not from physics. Suppose that
you, as a physicist, have been employed by a TV station. Your job is to carry out a poll
for the ratings of some shows the station is featuring. Not knowing anything at all
about polls you reason that you could hardly ask every viewer who could potentially
see the shows. You had a course in statistical physics and know of the power of
statistical concepts. You decide to take a sample. You are new in town and the way
you go about it is to pick viewers randomly from all over town and question them
about how they liked the shows.

In much the same way we could sample the phase space of a problem in statistical
mechanics. We take a random sample of points of the phase space and perform
averages using the random sample points. Though the concept seems very simple
indeed, it is a very powerful one. The whole concept of statistics is lurking behind
it. For many problems it even seems to be the only workable approach towards
a solution.

In this guide we will treat two fundamental problems in statistical mechanics with
the simple samplingmethod. The first is the randomwalk and other problems of such
type. The randomwalk problem should not be underestimated because of its apparent
simplicity. If the reader has really worked through the section on simple sampling
where the random walk problem is treated he will have acquired enough experience
to master the other methods. The relation of the random walk problem to physics is
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rather like that of the fruitfly to genetics. One encounters many difficulties inherent
in numerical approaches to the solution of problems in statistical mechanics already
in the randomwalk problem. Understanding the numerical treatment of this problem
greatly benefits the general understanding of the working of simulational physics.

Using the basic features of a walk we will branch out to study the nonreversal and
the self-avoiding random walks. These examples will clarify the limits of the simple
sampling concept and point the way towards other sampling concepts.

The second problem is that of percolation. The application of the concept of
simple sampling is rather similar to that of the random walk. The emphasis here
is on the analysis. The analysis is twofold. Many problems in physics require the
recognition of patterns. One might be interested in the growth of domains, droplets,
etc. In the percolation problem the patterns are the clusters. How does one determine
the clusters in a given percolation configuration?

The percolation problem will also be used to introduce methods for data analysis.
The data analysis we want to emphasize in this text is the determination of:

• The phase transition point
• Scaling

To determine the phase transition pointwewill use the cumulantmethod described
in Sect. 2.3. This will allow us to determine the phase transition point with very high
accuracy by the intersection of the cumulants for various system sizes. The finiteness
of the systemwill also be exploited in the scaling analysis in the form of the finite-size
scaling discussed in Sect. 2.3.

An improvement in the level of sophistication is the biased sampling concept.
Now that you have been in your job for some time you have learned that there
are other ways to take a poll. After consulting a street map you found out that
there are neighborhoods. Within a neighborhood the habits of the viewers appear to
have a certain distribution. The distributions are, however, not all the same. Also,
the neighborhoods are not homogeneously distributed on the map of the city. You
decide to go along with that and correct for the bias which you have under control.

An example where such a concept can be applied is the sampling of the self-
avoiding walk. Applying the simple sampling concept we will find it extremely
difficult to sample longer walks. The walks almost always terminate at a very early
stage. They terminate because a site to go to next had already been chosen earlier.
There is, nevertheless, a way to continue the walk, at the expense of introducing
a bias.

After being in the job for more than a while you have smartened up. You decide
that even though you have been doing your job well you can reduce the effort you
have put in so far. You have learned that often when you picked a household in certain
areas they did not have a TV set at all. In some other households the number of hours
spent sitting in front of the screen were small. In still others the time spent in front of
the screen was very irregular. By now you know where the important contributions
to your statistics come from.
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Importance sampling applied to statistical mechanics problems is very similar.
Though, for most problems, we do not know a priori where the important contribu-
tions come from, we can devise an algorithm which surely leads us there.

There is another fruitfly, and that is the Ising model. On a lattice with N sites there
are 2N states the system can take on. Most of these states do not contribute much
and a simple random sample of the states would yield a very poor convergence. As
a matter of fact, it is rather like looking for needles in a haystack, the needles being
the states contributing the most to the determination of a quantity.

The treatment of the Ising model with importance sampling will be the major
example where the concept is employed. Here we will also pick up again the discus-
sion of data analysis started in connection with the percolation problem.

3.2 Simple Sampling

We begin the guide with examples where the concept of simple sampling is applied.
Two major examples will be used to exhibit the application of the concept to the
numerical solution of the random walk and the percolation problem. We shall also
branch out to treat the nonreversal random walk and the self-avoiding random walk.

3.2.1 Random Walk

In the first example we want to treat the random walk (RW) problem with the simple
sampling Monte Carlo method. What we will be after, in particular, is to calculate
the average end-to-end distance 〈R〉 of a random walk as a function of the number
of steps.

An algorithm to calculate the end-to-end distance and other quantities of the
random walk problem requires several input parameters. First of all one needs, of
course, the step length N of the walker. This parameter we want to vary to establish
the relation between the step length and the average end-to-end distance. As a second
parameter we need to specify how many samples of N -step random walks we want
to generate. We shall denote this by n-of-samples.

In a block notation the Monte Carlo simple sampling of random walks then looks
like Algorithm 3.1.

This is the basic building block for the simple sampling of the end-to-end distance.
The outer loop controls howmany timeswewant a sample of the end-to-end-distance
of a walk of N steps. The generated result of one trial is accumulated and later on
an average is taken over the entire sample of size n-of-samples. No preference is
given to any of the trials. All trials of the sample carry exactly the same weight. The
average we take is then the simple arithmetic average. Let ri denote the end-to-end
distance of trial i , then



3.2 Simple Sampling 77

Algorithm 3.1 Random walk
do sample := 1 to n-of-samples

begin
do step := 1 to N

begin
generate-one-step

end
end
accumulate-results

end

〈R〉 = 1

n-of-samples

n-of-samples∑

i=1

ri . (3.1)

That the end-to-end distance is calculated by an arithmetic average is not the real
signature of the simple sampling for the end-to-end distance of random walks. The
real signature is the generation of a trial walk.

The innermost loop inAlgorithm3.1 is the loopwhich actually creates one realiza-
tion of a random walk with a step length of N . For definiteness, we study the random
walk in two dimensions on the simple square lattice (Fig. 2.1). Every random walker
will start from the same origin (x, y) = (0, 0). This is just for convenience, because
it makes the calculation of the end-to-end distance easier.

The task at hand is to resolve the heading generate-one-step. Remember, the con-
cept of simple sampling implies that on no level is any preference given whatsoever.

At each step a random walker has the choice to go in one of four directions with
a probability of 1/4. Each direction is equally probable. Let us label the directions as

We realize this algorithmically by generating a random number which can take
on the values 0, 1, 2 or 3 with equal probability

ir := random(0, 1, 2, 3).

Once we have chosen a direction we can advance the random walker to that position,
assuming that he was at position (x, y) before:

case ir
0 : x := x + 1.0;
1 : y := y + 1.0;
2 : x := x − 1.0;
3 : y := y − 1.0;

end
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Algorithm 3.2 Random walk
do sample := 1 to n-of-samples

begin
x := 0; y := 0;
do step := 1 to N
begin
ir:=random(iseed)∗4;
case ir
0: x := x + 1.0;
1: y := y + 1.0;
2: x := x − 1.0;
3: y := y − 1.0;

end
end

accumulate-results
end

We have almost resolved the block labeled generate-one-step, i.e., the generation
of one basic step of the random walker. What is left is the question of how we get
the random numbers. For this we assume for the moment that there is a procedure
which supplies random numbers distributed uniformly between zero and one. We
can get the desired four numbers by using the rounding and truncating features of
the programming language. If we assign a real number to an integer variable the real
number will be either truncated to the integer part by discarding the fractional part or
rounded to the nearest integer. What we need at the moment is the truncation so that
the number 3.99 . . . is truncated to 3. In our artificial language we assume that every
time a real-valued variable is assigned to an integer-valued variable the fractional
part is lost. Otherwise we have to specify explicitly that the variable is to be rounded
to the nearest integer. Now we can write

ir := random(iseed) ∗ 4.

Here iseed is a seed which is needed to start up the random number generator. After
all the discussion the algorithm to perform a simple sampling of end-to-end distance
random walks is Algorithm 3.2.

For those who have not yet worked with random number generators, but also for
those who have (!), we shall supply a generator. As an example of a random number
generator we take the function in Algorithm 3.3.

Some comments are due at this point. The reader is asked not to manipulate and
use other values for the parameters mult and modulo. The routine should be started
with an odd-valued seed. The last comment concerns the modulo function mod,
which we assume to exist.
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Algorithm 3.3Modulo random number generator
real function random(ibm)
integer mult, modulo, ibm;
real rmodulo;
begin
mult := 1277;
modulo := 2 ↑ 17;
rmodulo := modulo;
ibm := ibm ∗mult;
ibm := mod(ibm,modulo);
random := ibm/rmodulo

end

� Exercise 3.1. Program Algorithm 3.3 for the simple sampling of random walks.
Vary the step length and the sample size. Record the average end-to-end distance
in the x and y directions (separately!), the fluctuation of these quantities and the
average execution time of the program as a function of the step length.

STOP

Before continuing the reader is asked to work out the above exercise. We feel
that the exercises marked with � are vital to the understanding of the material
presented in this text. They should not be skipped.

Let us examine the results on the end-to-end distance of random walks generated
with the simple sampling outlined above. The x and y directions of the walker are
equally probable.We should get the same result for the average end-to-end distance in
the x direction as for y direction. Figure 3.1 shows results obtained using the random
number generator given above. The end-to-end distances are almost the same. We
also know that the result must be

〈R2〉 ∝ t, (3.2)

but from the numerical treatment we have to conclude a different law.
What went wrong? The concept itself cannot be wrong! At this point we need to

concern ourselves again with the generation of random numbers. The random num-
bers are at the very heart of the Monte Carlo method, whether it be based on simple,
biased or importance sampling. The success, i.e., the correctness of the results, of
a Monte Carlo simulation hinges crucially on the quality of the generated random
numbers.

Let us look at an even more sensitive measure. We know from Sect. 2.3.8 that
the end-to-end distance exhibits a lack of self-averaging. The error in the end-to-
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Fig. 3.1 Average end-to-end distance for the random walker. Plotted separately are the x and
y directions. The results were obtained using the random number generator of Algorithm 3.3
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Fig. 3.2 Left: The error of the end-to-end distance, which should be constant, as a function of
the step length. Here z stands for either x2 or y2, respectively. Right: The corresponding average
end-to-end distances. The results were obtained using the random number generator of Algorithm
3.3

end distance must be independent of the step length. The result on the error of the
end-to-end distances is shown in Fig. 3.2. The error is not constant!

We do not want to go into great detail. There are other texts dealing with the
problem of the generation [3.1–3.5] of random numbers, or more precisely pseudo-
random numbers. Here we just present a brief introduction to the subject.

Themost popular and prevalent generators in use today are themodulo generators.
An example of this type of generator was given above. Even though we have had
a bad experience with this generator we should not despise it altogether.
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The modulo generator is attributed to Lehmer [3.6]. Let m, a, c, x0 be integers
with m > x0 and a, c, x0 > 0. The basic idea used to generate a random number is
a folding mechanism. This is very much like the mappings one studies for chaotic
properties. The constructed sequences of numbers appear to be highly unpredictable.

As the name suggests, the key to the folding is the modulo function. The pseudo-
random number xi of the sequence (xi )i=1,... is obtained from xi−1 by the recursion
relation

xi = axi−1 + c (mod m).

It can be guessed from our first choice of parametersm, a and c that the statistical
properties of the generated numbers depend crucially on them. A bad choice ruins
the results of aMonte Carlo simulation. Several choices for the parameters have been
proposed [3.1–3.5], and the reader is asked to consult the cited texts.

One remark, though, should bemadehere.Numerical treatments of problemsoften
require a great many random numbers. Hence the period after which the sequence
repeats must be quite large. It must be very much larger than the number of random
numbers required in the simulation, otherwise erroneous results appear. The reader
can easily convince himself of that by doing the randomwalk simulation with param-
eters chosen such that the period is small. The data shown in Fig. 3.1 show that we
eventually reached the cycle length of the random number generator.

Most computer installations and some programming environments provide a ran-
dom number generator. From the experience above it should be clear that you should
not trust a generator before it has been tested by you! Unfortunately most statistical
tests fail to show correlations which appear later in a bias of the results of simulations
of problems in statistical mechanics. Probably the best test is to apply the generator to
a real problemwhere the results are known or where it can be inferred that something
must be wrong with the generator [3.7].

In our example (Figs. 3.1 and 3.2) we see that the correlations in the random
numbers can sometimes show up in a subtle way. Some quantities may be affected
only very weakly.We see that the average end-to-end distance comes out as expected
for the walks of smaller lengths where no problem with the cycle length existed. The
error in the end-to-end distance tells a different story and is a more sensitive measure
in these circumstances.

There is a quick test which no generator should fail. The quality of a random
number generator can be seen if one tries to completely fill a d-dimensional lat-
tice. We have seen above that we can map the interval (0, 1) to the discrete set
{0, 1, . . . , L − 1} of integer numbers. This mapping allows us to construct random
vectors (x1, . . . , xd) of integers in a d-dimensional hypercube. Each site reached
with a random vector derived from the generator is marked. A good generator must
cover the entire hypercube.

The result of such a test in two dimensions using the modulo generator is shown in
Fig. 3.3. Clearly the generator performs very badly, i.e., shows duplet correlations.
Only parts of the lattice are reached. Many sites are not visited at all! In three
dimensions the situation is even more dramatic.
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Fig. 3.3 Example of a test of a random number generator. The circles are the sites of a two-
dimensional lattice which were reached by vectors obtained from the random number generator.
The rhs figure shows strong correlations among the (pseudo-)random numbers

! Exercise 3.2. Write a program which performs the above test for a random num-
ber generator. How should the number of unvisited sites decay with the number of
attempts to fill the lattice?

It should be noted that the described method is actually used in Monte Carlo
algorithms. Often it is required to go randomly through a lattice of spins. The results
show that when using a bad random number generator certain lattice sites would
never be visited and the results are therefore biased.
! Exercise 3.3. Verify numerically the Einstein law

〈R2〉 ∝ t

by performing the simulation in two, three and four dimensions.

! Exercise 3.4. Biased random walk. Algorithm 3.1 can easily be modified for the
study of the biased random walk. To make the matter somewhat easier we work in
one dimension. In this problem we choose the +1 steps with a probability p and the
−1 steps with a probability q such that p + q = 1. After having modified Algorithm
3.1 for this problem, are we still doing a simple sampling?

Exercise 3.5 Use the algorithm given in Example 3.1 to test the random number
generator given in the text. Increase the number of bins and test for uniformity and
skew.

Exercise 3.6 Diffusion limited aggregation. In the diffusion limited aggregation
problem one starts with a seed on a d-dimensional lattice. A randomwalker is started
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from the edge of the lattice. If the random walker gets to one of the nearest-neighbor
sites of the seed it sticks and the two form an aggregate of two sites. A new random
walker is released and sticks to the aggregate if it gets to one of the nearest-neighbor
sites, etc. Write a program to generate a diffusion limited aggregation structure.

Exercise 3.7 Construct an algorithm to generate random walks of length N which
does not utilize the “case” statement.

Exercise 3.8 Determine the number of loops a random walk makes as a function of
the step length N .

Exercise 3.9 Invent an algorithm for the randomwalk problem which runs on a par-
allel machine with p processors which you are allowed to connect whichever way
you like.

3.2.2 Nonreversal Random Walk

Nonreversal walks are not allowed to immediately fold back. Each step has to be
a “forward” step. By “forward” step we mean that the walker is not allowed to make
an immediate reversal. It is, however, allowed to cross its own path or at some later
time retrace some of the steps made earlier (Fig. 2.1).

For the numerical treatment of the nonreversal random walk (NRRW) by simple
samplingwe can follow at least two possible routes. Overall the algorithm is the same
as that for the simple sampling of random walks. Only the generation of a walk, i.e.,
one try, has to be modified to incorporate the constraint.

One possibility is to ignore at each step that the walker came from somewhere
(except at the origin). If the step that the walker takes goes back to the one it came
from, another try is made until a “forward” step is found. Here we choose at each
step one of the four sites in our two-dimensional problem with probability 1/4:

Suppose that by chance we choose the direction labeled “0”. An immediate rever-
sal to the site visited before follows. As a result, a new trial for a step is made until
a valid direction is picked. Here, in the example, as soon as one of the numbers
{1, 2, 3} appears a valid step is made.

The other possibility is to remember where we came from and choose only from
the three possible neighboring sites. Here the probability is taken to be 1/3 for each
of the three possible directions. There are always three directions even if all the sites
the walker can go to have been visited before at some time. Only the one visited
immediately before the current step is prohibited.
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Algorithm 4 Nonreversal random walk
x := 0; y := 0;
xpre := 0; ypre := 0;
do step := 1 to N

begin
repeat
xtemp := x ; ytemp := y
generate-one-step (x, y)

until ((xpre �= x) or (ypre �= y));
xpre := xtemp
ypre := ytemp

end

This route requires the identification of the possible nearest-neighbors and the
creation of a list of these. From this list with three entries one member is chosen with
equal probability.

For now we take the ignorant approach and may knock at closed doors several
times. This approach requires little modification to the basic random walk algorithm
given in the previous section. We could, for example, introduce new variables

xpre, ypre

to keep track of the preceding position and to test whether the chosen new position
is the same as the preceding one. If so, we repeat the generation of the step until the
preceding and new positions are not identical. See Algorithm 3.4.

� Exercise 3.10. Program Algorithm 3.4 for the sampling of nonreversal random
walks. Vary the step length and the sample size. Record the average end-to-end
distance in the x and y directions (separately!), the fluctuations of these quantities,
and the average execution time of the program as a function of the step length.
Compare your numerical results with the exact answers.

STOP

! Exercise 3.11. Develop an algorithm for the nonreversal random walk problem
which chooses at each step always one of the 2d − 1 possible nearest-neighbor sites
on a simple d-dimensional lattice.

Exercise 3.12 Compare the performance of Algorithm 3.4 and the algorithm from
Exercise 3.11.
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Fig. 3.4 Left: An example
of a self-avoiding random
walk. Right: A random
walker carrying a label of 5
which he leaves at all places
he visits

3.2.3 Self-avoiding Random Walk

The generation of self-avoiding randomwalks requires a littlemore algorithmic com-
plexity than the random or nonreversal random walks. In the random walk problem
no constraint was placed on the possible sites the walker could visit. At each step the
walker has completely forgotten where it came from. Each site is considered an ori-
gin from which there are 2d (for a simple d-dimensional lattice) possible directions
to go in. The self-avoiding random walk (SAW) is not allowed to go to all sites. It is
not allowed to cross its own path and the walker is not allowed to make an immediate
reversal. At each site it locally remembers where it came from and has only a maxi-
mum of 2d − 1 allowed choices. One choice of the 2d nearest neighbors is always
lost due to the nonreversibility constraint. The local environment may prohibit some
of the other choices due to the condition that the path must not cross itself. There are
situations where there are no choices left at all!

An example of a walk is given in Fig. 3.4 (cf. also Fig. 2.1). Starting from the
origin, the random walker performed 12 steps. If the 13th step were to go to the
right or down then the walker would go to a previously visited site. Both cases are
not allowed. In the second case it would be an immediate reversal. In the first case
the walker would visit a site twice and as a consequence the walk terminates with
a length of 12 steps.

That the walk terminates once a site out of the 2d − 1 neighboring sites is chosen
which has been visited before is the key to the simple sampling of self-avoiding
walks. We could also argue that the site was forbidden anyway. So why not choose
out of the ones we can actually go to? We will follow up on this idea in the next
sectionwhere we discuss the application of biased sampling to the self-avoidingwalk
problem.

In the simulation of random walks we did not take any notice of the actual path
or trace of the walk. For the self-avoiding random walk we have to check at each
step whether it is a valid step. We have to record the trace of the walker on the lattice
(Algorithm 3.5). The generation of the walk itself is the same as for the random walk
problem.

The only new part which has come in is that we do not generate exactly N steps,
as for the random walk problem, but an unpredictable number of steps. The walk can
terminate at any step due to the constraints. To provide for an unpredictable number
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Algorithm 3.5 Self-avoiding random walk
do sample := 1 to n-of-samples

begin
step := 0;
repeat
generate-one-step;
step := step + 1;

until (step-invalid or step = N )
accumulate-results

end

of steps we have replaced the unconditional loop over N steps with a loopwhere after
the generation of a step it is checked whether an invalid move has been made or the
maximum number of steps N has been reached. In both cases the walk terminates.
The length of the walk in steps is always less than or equal to N . For the random
walk it was always equal to N .

How do we check that the step made is a valid one? Let us assign to each walker
a unique label. To the first walker we assign the label “1”, to the second, the label
“2”, etc. Such a label comes automatically with the enumeration of the walkers by
the outer loop. As the walker advances it labels the sites it has visited with its unique
label (Fig. 3.4). On advancing to the next site it checks whether the site carries the
same label as its own. If so, then this site has been visited before and the self-avoiding
condition applies with the termination of this particular trial of a walk.

We are here at a branching point. We have to decide how to generate a single step.
The choices we have are the same as for the generation of the nonreversal random
walk. We can either be ignorant and use the algorithm for the generation of a single
step as for the randomwalk problem or we can a priori choose only out of the 2d − 1
potentially valid sites. For the moment let us be ignorant.

The labeling scheme does not yet allow us to distinguish whether the site was the
one previously visited or an older one. If it is the previously visited one then we have
to try again. In the other case the walk terminates.

The labeling scheme does, however, allow us to determine whether the step is
valid or not. We may take advantage again of the uniqueness of the label. Before
advancing to the next site we step up the label of that site by one. Once the walker
has advanced it can check whether it advanced to a site carrying the label of the
present walk (in this case the walk terminates) or the label plus one (in this case it
has reversed its step and another try is made).

One way to implement the labeling scheme for the trace of the walk is to introduce
an array. For the other examples we did not require such an array, neither for the
random nor for the nonreversal randomwalk. What are the dimensions of the lattice?
At most the walker can travel a distance N . Even though to travel a distance N is
highly unlikely, we have to provide for the extremum. Since the walker can go in any
direction we dimension the lattice as (Algorithm 3.6)
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Algorithm 3.6 Self-avoiding random walk
integer lattice(−N : N ,−N : N );
do sample := 1 to n-of-samples

begin
step := 0;
x := 0; y := 0;
xc := 0; yc := 0;
repeat
repeat
generate-one-step(xnew, ynew);

until lattice(xnew, ynew) �= sample + 1;
if lattice(xnew, ynew) = sample then
terminate := true

else
begin
lattice(x, y) := sample;
x := xc; y := yc;
lattice(x, y) := sample + 1;
xc := xnew; yc := ynew;
step := step + 1;

end
until (terminate or step = N );
accumulate-results

end

integer lattice(−N : N ,−N : N )

� Exercise 3.13. Program Algorithm 3.6 for the simple sampling of self-avoiding
randomwalks. Print out the lengths (in number of steps) where the walks terminated.
Plot the number of self-avoidingwalks as a function of the number of steps N . Obtain
also the entropy S by the fraction of successful attempts W (N ) using the relation
S − S0 = ln[W (N )] where S0 is the result for the random walk.

STOP

We do not know when a walk terminates. Different trials will result in different
lengths of a walk before it terminates. From the above exercise we have gained
some experience of how much the length varies. If we want to obtain results on the
end-to-end distance for a length of N (N large) there are many walks terminating
with a length less than N , see (2.16). For large N it becomes nearly impossible to
compile enough statistics! Instead of discarding trials less than the desired length, we
record them and get results for the end-to-end distance for walks of lengths between
1 and N . The statistics will, however, be different for the different lengths. The short
lengths will have by far larger sample sizes than the longer lengths. This makes the
simple sampling of the self-avoiding walk rather impossible for lengths of, say, 100
and larger.
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� Exercise 3.14. Program Algorithm 3.6 for the sampling of self-avoiding random
walks. Instead of printing out the lengths where the walks terminated record the end-
to-end distances in the x and y directions separately. Compute also the fluctuations of
the end-to-end distances and record the execution time necessary to gain sufficiently
good statistics for the largest step length you can manage on your computer system.
Check that the error is under control.

STOP

! Exercise 3.15. Develop an algorithm for the SAW problem which chooses at
each step always one of the 2d − 1 possible nearest-neighbor sites on a simple
d-dimensional lattice.

Exercise 3.16 Can you think of another way to keep track of the path of the walker.
(Hint: use a stack.)

Variations on a theme

Exercise 3.17 Reptation. The connection between polymers and self-avoiding
walks leads on to another idea for generating self-avoiding walks. Assume we
have a self-avoiding configuration, or conformation in polymer language, of length
N steps. Remove a “link” at one end of the chain. At the other end of the chain
pick a random direction (out of the 2d − 1 potential ones) and try to paste there the
removed link in this direction. If the self-avoiding condition is violated do not accept
this move. Otherwise a new configuration is found and the procedure is repeated.
What sampling concept applies to this algorithm? To be sure, wait for the answer to
this question until the end of the guide.

3.2.4 Percolation

The simple sampling method for the percolation problem appears, on the face of
it, to be an even simpler problem than the random walk problems discussed in the
previous sections. Simple sampling here means the generation of configurations
and the analysis of these with a uniform statistical weight attached to them. Each
configuration is treated on an equal footing.

Let us briefly recall that we are interested in finding the point of the geometrical
phase transition pc for the percolation problem (Sect. 2.3.1). Below pc there are only
finite clusters. Above pc there is at least one infinite cluster. This geometrical phase
transition is the analog to the second-order phase transition at Tc for thermal systems.
We shall take the opportunity here and begin with the study of phase transitions and
their analysis apart from the problems specific to percolation theory.
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Algorithm 3.7 Percolation
do no-of-config := 1 to N

begin
generate-a-configuration;
analyze-the-configuration;
calculate-quantities;
accumulate-results;

end
perform-averaging;

Algorithm 3.8 generate-a-configuration
do i := 1 to L

do j := 1 to L
if p < random(iseed) then
lattice(i, j) := 0

else
lattice(i, j) := 1;

Before addressing the issue of exponents we start with the determination of the
threshold pc. For the simple sampling we want to generate N realizations of a perco-
lation configuration and average over quantities derived from these configurations.
The basic algorithm for doing so is given as Algorithm3.7.

In the percolation problem, more precisely the site percolation problem, we con-
sider lattices (for convenience we again assume a two-dimensional lattice) filled
with a probability p. One filling is considered a configuration in the simple sampling
scheme. To generate one configuration we have to visit each site of the lattice once
and decide whether we fill it or leave it unoccupied. This can be done as follows

Here random is a real function which returns a random number in the interval
(0, 1) and iseed an integer which, upon first calling, initializes the random number
generator.

� Exercise 3.18 Program Algorithm 3.8 for the generation of one configuration of
the site percolation problem. Print out the configurations for various choices of the
probability p with which the lattice was filled and inspect them visually.

STOP

The analysis of a generated configuration is usually done by counting the number
and size of clusters in the configuration. As described earlier, one defines the order
parameter of the phase transition using the clusters.

We now need to develop an algorithm to identify a cluster in a generated con-
figuration of sites. Let us recall that a cluster is defined as follows: Two occupied
sites belong to same cluster if they are nearest neighbors. Hence, a cluster is a subset
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Fig. 3.5 Left: A site percolation configuration. Right: The subgraphs of the above configuration

of the occupied sites such that for each site belonging to the subset we can find
a nearest-neighbor site belonging to that subset.

We may view the occupied sites of the lattice as a graph. This graph can have
many disjoint subgraphs, as illustrated in Fig. 3.5. There are graphs containing only
a single site, clusters containing two sites, etc. The task at hand is to enumerate all
subgraphs, i.e., how many subgraphs are there with how many sites?

Before attempting to identify and enumerate all the clusters in a given config-
uration we set ourselves a somewhat easier task: identify an infinite cluster. Even
simpler! Not the entire cluster but only a part. In other words, is there a path which
leads us from one side of the lattice to the opposite side. The probability of finding
such a path defines also an order parameter Ps, which can be used to determine the
transition point. Below pc the probability of finding such a path is zero; only finite
clusters exist, which cannot lead, in the thermodynamic limit, to the opposite side.
Above the threshold an infinite cluster exists which allows one to cross from one
side to the opposite side, and the order parameter is one. At pc the order parameter
jumps from zero to one.

� Exercise 3.19. Invent an algorithm which decides whether in a given configuration
of the site percolation problem one can cross from one side of the lattice to the
opposite side of the lattice. Such a cluster is called the spanning cluster. Determine
the order parameter Ps for various lattice sizes and probabilities p.

STOP

Thosewho didExercise 3.19will have found that the order parameter has a smooth
behavior for the lattice sizes investigated. There is no jump at a unique probability p
from zero to one. We have encountered for the first time finite-size effects in a phase
transition problem. Let us postpone the discussion of finite-size effects a little bit
and return to the question of the identification of clusters in a given configuration.
From the experience with the order parameter Ps, we expect to find a similar feature
for the order parameter P∞ derived from the largest cluster.
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Fig. 3.6 A binary tree on
which we study percolation
configurations

Fig. 3.7 One cluster of
a percolation configuration
on a tree. The path to find the
first leaf or dangling end of
the cluster is indicated

Probably the most natural way to identify all the clusters is a recursion algorithm.
To illustrate the idea we simplify the problem. Instead of working on a square lattice
we work on a binary tree. An example of such a tree is displayed in Fig. 3.6.

For each site there are only two nearest neighbors in the downward direction
and one predecessor in the upward direction. The percolation problem itself remains
defined as above. Each site is visited and is set occupied, with a probability p, or left
unoccupied with a probability 1 − p.

Consider a configuration of occupied and empty sites on the tree. Pick one occu-
pied site. To determine which of the sites belong to the same cluster we traverse
the tree until all possible paths have been explored. Since each site has at most two
occupied nearest neighbors in the downward direction, there are at most two possible
directions to be explored. We shall call these directions “left” and “right”.

The idea used to visit all the sites belonging to a cluster is to first travel along the
cluster as far as possible, i.e., until a leaf of the tree or, in the terminology of the
percolation problem, a dangling end has been found. The strategy for finding such
a dangling end is to go to the left as far as possible. In Fig. 3.7 we show such a path.
Once we have reached a point where we can proceed no further to the left, we go to
the right one step, if possible, and then continue to go left, etc. Eventually we will
reach a site which has neither left nor right neighbor. This site is a dangling end.
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Algorithm 3.9 analyze-the-configuration for a binary tree
burned := 0;
repeat
select-an-unburned-site(i)
n := 1
go-through-tree(i, n)

burned := burned + n
until occupied-sites = burned
procedure go-through-tree(i, n)

begin
if tree(i, 1) �= 0 then go-through-tree(tree(i, 1), n);
if tree(i, 2) �= 0 then go-through-tree(tree(i, 2), n);
tree(i, 1) := 0;
tree(i, 2) := 0;
n := n + 1;

end

We remove this site, raise the counter for the number of sites in the cluster by one
and go back to the site we came from.

Now we try to go up by going to the right. If this is not possible then the removal
of the dangling end has made the current site a dangling end, which can be removed.
The algorithm proceeds to work upwards on the tree until we are back at the site we
started out from, and hence all sites belonging to the cluster have been visited.

The algorithm produces dangling ends which can be stripped or burned from
the cluster and eventually the entire cluster is burned away. Only those sites remain
which are not connected to the current cluster. A fresh site can be selected and the
procedure of burning sites is repeated. The algorithm stops if there are no sites left
and the whole tree is consumed.

In Algorithm 3.9 we have organized the storage of the tree with N sites in a two-
dimensional array tree (1 : N , 1 : 2). The first index gives the site and the second
index gives the left or right neighbor. The value of the array elements can be either
0 or an integer number out of the set {1, . . . , N }. If we find a 0 then the site is not
connected, otherwise we have a pointer to the next node or site.

� Exercise 3.20. Program Algorithm 3.9 for the identification of clusters of the site
percolation problem on a binary tree.

STOP

That we elected to exhibit the burning algorithm for the percolation problem on
a binary tree was, of course, intentional. On a regular lattice the algorithm becomes
slightlymore complicated. The general idea for traversing a cluster remains the same.
The simplifying feature of the tree is that it has no loops! On a regular lattice we can
have loops as shown in Fig. 3.8.
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Fig. 3.8 A cluster and its
graph showing how a loop is
detected
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To remove the problem of loops, we again make use of the trace. Each site which
has been visited by the algorithm but was not burned (i.e., set to zero) receives the
value 2. Hence a loop will be detected by testing whether the next site carries the
value two. This site is then left alone and one can burn the previous sites.

The definition of the order parameter for the phase transition based on clusters is
as follows: Take the largest cluster of a given configuration and divide it by the total
number of occupied sites. Of course we have to average over many configurations
to get a precise estimate of the order parameter P∞.

Close to the transition point pc we expect (Sect. 2.3)

P∞ ∝ |p − pc|β

with the exponent β. At this point we are not interested in how to compute β, but we
want to determine pc.

We have tacitly assumed so far that the boundaries are free. The lattice size is L2

and once i or j is larger than L the boundary is crossed. The actual size of the lattice
was assumed to be (L + 2)2 with the boundary set equal to zero. Here for the first
time we encounter the issue of boundary conditions. There are two possible choices
for the boundary. We can choose the boundary to be:

• Free or
• Periodic

For some problems even more complicated boundary conditions are useful. We
will discuss these in the exercises to the section on importance sampling. Here we
shall only be concerned with the free and periodic boundary conditions.

For the periodic boundary conditions we make the identification: L + 1 = 1 and
0 = L . The result for the two-dimensional lattice is a torus. Do the results depend
on the choice of boundary conditions?

�Exercise 3.21. Program the algorithm for the identification of clusters of the site per-
colation problem on the square lattice outlined above. Determine the order parameter
P∞ for various lattice sizes and probabilities p. Do this for the free and the periodic
boundary conditions.

STOP
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Here we encounter the finite-size problem again. We expect to find a power law
behavior for the order parameter above the threshold and an identically zero order
parameter below the threshold pc. Instead, we find smooth S-shaped curves for all
system sizes (Fig. 2.9).

In a finite lattice we cannot accommodate a diverging correlation length! The
correlation length ξ diverges, when the transition point is approached, as

ξ ∝ |p − pc|−ν . (3.3)

The correlation length can be at most ξ ≈ L . To handle this situation, one applies
a finite-size scaling analysis to the data for the different system sizes (Sect. 2.3.2).
We shall defer such an analysis to the discussion of finite-size effects in the data for
the Ising model. The only point we want to make now is that the simulation results
depend on the choice of the boundary condition. The finite-size effects are different
for free and for periodic boundary conditions!

For practical purposes the algorithm given above is of no use. For the large lattices
one wants to study, the recursion goes so deep that the storage capacity will very
soon be exhausted. In practice one uses a different algorithm which we discuss in
the Appendix, where a C listing is also given.

Exercise 3.22 Lattice animals. Consider clusters on a regular lattice which have no
loops. Such clusters are called lattice animals. Can you think of a way to use simple
sampling for all lattice animals with N sites?

Exercise 3.23 Anomalous diffusion. Consider an ant parachuting onto a percolation
configuration [3.8]. As soon as it has landed it starts a random walk on the clusters.
The ant can only walk on the occupied sites. Compute the mean square displacement
as a function of time and p:

〈R2〉p ∝ t x

and obtain the exponent x .

� Exercise 3.24. Can you think of an algorithm for a parallel architecture which
identifies clusters?

Variations on a theme

Exercise 3.25 Bond percolation. In the bond percolation problem one considers
once again a lattice. For the site percolation problem all bonds between the sites
were present. Only the sites mattered. Now, all the sites are occupied and we occupy
a bond with a probability p and leave it empty with probability 1 − p. Clusters are
defined in a similar way as for the site problem. Determine the order parameter for the
two-dimensional bond percolation problem. Do this problem for the order parameter
defined by the spanning cluster Ps and for the order parameter determined by the
mass of the largest cluster P∞.
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Exercise 3.26 Site–bond percolation. We can also study bond and site percolation
together. Recall that for the site percolation problem all bonds existed and for the
bond percolation problem all sites existed. In the site–bond percolation problem sites
are present with a probability ps. Bonds can exist only between occupied sites. If
two neighboring sites are occupied the bond is present with a probability pb. Study
the percolation threshold pbc as a function of ps and pb, in two dimensions.

Exercise 3.27 Kinetic percolation. For someproblemswe are interested not somuch
in all of the clusters in a given percolation configuration as in just the largest. For
example, right at the percolation threshold pc the largest cluster is a fractal and we
would like to know more about its properties. We can generate a large percolation
cluster by a sort of kinetic growth process from which we can also learn the growth
law, i.e., how the radius of gyration grows with time. The algorithm is as follows.
Start with a single site and make a list of the nearest neighbors. Occupy each of the
sites in this list with probability p. Make a new nearest-neighbor list (be careful,
the ones you visited before but decided not to occupy are marked as unoccupied).
Program the algorithm and calculate the radius of gyration as a function of p and
time.

Exercise 3.28 Continuum percolation. There is also a continuum version of the per-
colation problem. Imagine a square. You have disks at your disposal which you throw
randomly onto the square. For this you generate an x coordinate and a y coordinate
using a random number generator. Place the center of the disk at this coordinate with
probability p. If you can cross from one side of the square to the opposite site via
overlapping disks then a spanning cluster is found. Print out your trials and decide
visually if there is a spanning cluster or not.

3.3 Biased Sampling

The treatment of the self-avoiding walk problem emphasized the limits of the simple
sampling method. Though the method is fairly straightforward to apply, for many
problems the usefulness of the concept is restricted. Even for a small number of steps
it is hard to compile enough statistics. The difficulty increases exponentially with
increasing number of steps. The concept of the biased sample helps (at least partially)
to overcome this difficulty. To demonstrate how biased sampling can increase the
efficiency, we stay with the self-avoiding walk problem. This also allows the reader
to make an immediate comparison of the performance of simple sampling with that
of the biased sampling method.
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Algorithm 3.10 Self-avoiding random walk
do sample := 1 to n-of-samples

begin
step := 0;
repeat

generate-one-step;
step := step + 1;

until (step-invalid or step = N )
end
accumulate-results

end

3.3.1 Self-avoiding Random Walk

To begin to develop an algorithm for the biased sampling of the self-avoiding walk
problem we look again at the basic algorithm we developed in the simple sampling
treatment. This algorithm is Algorithm 3.10.

� Exercise 3.29. If you have missed out any of the exercises dealing with the simple
sampling of self-avoiding random walks you should stop and do them now.

STOP

The real shortcoming of simple sampling was that a walk quickly terminates, i.e.,
the attrition problem. If we happen to choose a site which has been visited before, the
walk terminates even though other sites are unoccupied. Suppose we always produce
a list of the available nearest neighbors. The length of this list is always smaller than
the coordination number of the lattice minus 1, i.e., 2d − 1, on a d-dimensional
hypercubic lattice. Let l be the length of the list of available neighbors. In the biased
sampling we choose only from the list of available neighbors, and each entry has the
same probability of being picked. The probability of each entry is hence 1/ l.

The idea of picking only the available sites does not guarantee that the walk
continues until N steps have been made. The problem that the walk runs into a dead
end before N steps have been made still remains, but the probability that the walk
continues up to N steps is increased.
� Exercise 3.30. Program Algorithm 3.11 for the biased sampling of self-avoiding
random walks. Print out the number of steps where the walks terminated.

STOP

For this algorithm, as before for simple sampling of the nonreversal and self-avoiding
random walks, labels are a useful tool to keep track of the path and to generate a list
of valid neighbors.
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Algorithm 3.11 Self-avoiding random walk
integer lattice(−N : N ,−N : N );
do sample := 1 to n-of-samples

begin
step := 0;
repeat
produce-valid-neighbor-list(x, y);
if list = empty then
terminate := true

else
begin
choose-new-site-from-list(xnew, ynew);
x := xnew; y := ynew;
step := step + 1;

end
until (terminate or step = N );

accumulate-results
end

Those who did Exercise 3.30 will have found that the lengths of the walks we
could sample before a walk terminated has increased. The price we pay for this
improvement is thatwe have introduced a bias.We are favoring certain configurations
of a walk. For simple sampling, every walk carried the same weight for average
quantities like the end-to-end distance. For biased sampling every walk of length
N steps carries a weight

W =
N∏

i=1

li
(2d − 1)

, (3.4)

and when calculating averages this has to be taken into account.

� Exercise 3.31. Calculate the average end-to-end distance with the biased sam-
pling of self-avoiding random walks. Compare your results with those from simple
sampling.

STOP

Variations on a theme

! Exercise 3.32. k-tuple SAW. The k-tuple self-avoiding random walk is very similar
to the regular self-avoiding random walk. Whereas in the regular SAW a site can be
visited at most once, the k-tuple walk is allowed to visit a site at most k-times. Write
an algorithm for this problem using the biased sampling concept.
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Exercise 3.33 GSAW. The growing self-avoiding random walk (GSAW) is defined
almost the same as the regular self-avoiding walk. The only difference is that the
transition probability to a site is the inverse of the number of free sites. Write an
algorithm for this problem using the biased sampling concept.

3.4 Importance Sampling

The concept of simple or biased sampling fails to be practical for problems where
contributions to quantities come almost entirely from certain regions in phase space.
A homogeneous sampling of the phase space would require a tremendous effort. The
knowledge of the regions where the important contributions come from can be used
to sample mainly in these regions. A typical example for the application of this idea
is the Ising model.

3.4.1 Ising Model

Aswith the previous examples we will concentrate on studying the problem in a two-
dimensional space. Consider the Ising model Hamiltonian

H = −J
∑

〈i, j〉
si s j , (3.5)

where J (the exchange interaction between nearest-neighbor sites) can be either
positive, i.e., the ferromagnetic case, or negative, the antiferromagnetic case. The
variable s denotes a spin of either +1 or −1. We shall restrict ourselves to a simple
square lattice for which the symbol 〈i, j〉 means the four neighbors nearest to the
site (i, j):

Let x denote a configuration of spins.
Recall, from the discussion on the importance sampling concept in Chap. 2 and

at the beginning of this chapter, that we want to generate aMarkov chain

x0, x1, . . . , xn

such that the configuration xi+1 depends only on the immediately preceding con-
figuration xi . The probability of getting to xi+1 from xi is given by a transition
probability
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W (xi+1|xi ).

Why do we need a Markov chain? The idea of importance sampling is to sample
mainly the largest contributions to a quantity, for example, the magnetization. We
want to sample configurations of spinswhere theBoltzmann factor exp[−H(x)/kBT ]
has a peak. A priori we do not know where such regions are! Suppose we could
invent a process by which states are generated where an important contribution to the
magnetization or any other observable is made. This process is the Markov process,
with an appropriate transition probability leading from one configuration to another.

The transition probability is chosen such that ultimately the distribution of the
states x0, x1, . . . , xn is the Boltzmann distribution

P(x) ∝ exp

(
−H(x)

kBT

)
.

How must we choose the transition probability to guarantee that the states will
be distributed with a Boltzmann law? We have already given a detailed discussion
of this point in Sects. 2.1 and 2.2. Intuitively we can argue as follows. Suppose we
restrict the treatment to attempts to turn over single spins si . Suppose on turning
a spin from si to −si we lose energy. Because we always want to be at or near the
ground state of the model we should accept such amove with probability one. Hence,
in the case where the change in energy ΔH is negative, ΔH = H(xnew) − H(xold),
we have W (xnew|xold) = 1. However, this way we will certainly get stuck in a local
minimum of the energy. To avoid this we accept moves which raise the energy. But
we allow moves which raise the energy much only very rarely; they should have
a low probability. If, on the other hand, the change in the energy is small, i.e., the
energies of the old and new configurations are close, we accept the move with a fairly
high probability. This way we can climb out of a local energy minimum.

How should we choose the transition probability in the case where the change in
energy ΔH is positive? Intuitively it seems reasonable, and it can be shown exactly
(Sects. 2.1 and 2.2), that we can choose

W (xi+1|xi ) = min

[
1, exp

(
−ΔH
kBT

)]
, (3.6)

which is called the Metropolis function. This is, however, not the only possible
choice for a transition probability. There are other choices, for example the Glauber
function( 12 (1 − tanh(ΔH/2kBT )).

� Exercise 3.34. What are the possible changes in energy ΔH for the two-
dimensional nearest-neighbor Ising model on a simple lattice?

STOP
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Above we constructed a single-spin-flip transition probability. Once all spins have
been given a chance to reverse their directions one sweep has been made. One sweep
is also called one Monte Carlo step per spin, abbreviated MCS.

There are several possible ways to implement a sweep through the lattice. Taking
the word sweep literally, we mean going regularly through the lattice. Another pos-
sibility is to draw the site to be visited at random. Once as many attempts as there
are sites in the lattice have been made, one Monte Carlo step has been made. In one
Monte Carlo step some sites may have been considered several times, whereas oth-
ers were completely ignored. On the average, barring any problems with the random
numbers (Sect. 3.2.1), each site is given a chance for a reversal.

Now that we know how to set up the Markov process to sample the important
contributions to an average, how do we compute the magnetization, for example?
Due to the construction (Sect. 2.1) the computation of the magnetization appears as
a simple average. The magnetization of a configuration is given by

Mi =
L2∑

j=1

s j (3.7)

and the magnetization per spin is then

mi = Mi L
2. (3.8)

The average magnetization per spin is the arithmetic average over many configura-
tions

〈m〉 = 1

N

N∑

i

mi . (3.9)

We have to start the importance sampling with some initial configuration s0 and
from then on the new states are generated. Which initial spin configuration should
we choose? The answer depends on the type of problem we are interested in. Let us
assume that we want to study the equilibrium properties of the model, such as the
magnetization and susceptibility, at certain temperatures. Suppose, further, that we
do not start from a completely ordered spin configuration but from a random spin
configuration. What will happen? The random spin configuration corresponds to the
infinitely high temperature state T = ∞ with zero spontaneous magnetization. The
temperature we are interested in is below the critical temperature so that there is
a nonzero spontaneous magnetization. We now let the system evolve in time using,
for example, the Metropolis function. Essentially, we have performed a quench from
a disordered region into the ordered region in the phase diagram. It will take an
enormously long time until an equilibrium state is established. Before equilibrium
is established the excess energy has to be removed from the configuration.
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Algorithm 3.12 Ising model
(* initialize the lattice *)

do i := 1 to L
do j := 1 to L

lattice(i, j) := −1
(* Monte Carlo part *)
do mcs := 1 to mcsmax

begin
generate-one-sweep;
if mcs ≥ n0 then
do-analysis

end

To avoid this problem we start out with an ordered configuration, and then the
initial transient in the Markov chain, which corresponds to nonequilibrium states,
is much shorter. Away from the transition point the relaxation is exponentially fast.
What happens close to the transition point has been discussed in Sect. 2.3. For
convenience we shall start with a configuration where all spins are down, i.e., with
amagnetization of−1.Alternativelywe could always start from the last configuration
generated for some temperature if we go up in temperature.

We are almost ready to write part of the algorithm. What we have to consider is
the sample size. For the moment let us leave this question on one side and call the
number of samples we want to take mcsmax.

In the Algorithm 3.12 n0 is the number of configurations of the transient which
we must discard because they do not correspond to equilibrium configurations for
the desired temperature.

Let us go back again to the transition probabilities. It is clear that the configuration
xi+1 cannot differ too much from the configuration xi . We have allowed only single
spin flips and not flips of larger patches of spins, which would lead to a larger stride
in phase space. The sequence of the states can be viewed as a trajectory in phase
space (see discussion in Sect. 2.2.2 on the dynamic interpretation of the Monte Carlo
algorithm). Viewed from this angle we can see that successive configurations must
be correlated. To obtain an unbiased statistical sample of states we must discard nδ

states between two sample points. How many we must discard depends not only on
the temperature but also on the conservation laws. See Algorithm 3.13.

Exercise 3.35 Can you design another solution to select every nδth configuration?

After these preliminaries we come to the central part of the importance sampling
algorithm of the Ising model, i.e., to generate-one-sweep in Algorithm 3.13. The
transition probability was designed such that we always attempt to flip only a single
spin and not larger patches of spins. One sweep through the lattice is to attempt to
flip all spins. This is one Monte Carlo step. After one Monte Carlo step we have
obtained a new configuration from the old. So the first step is Algorithm 3.14, where
L is the linear lattice size.
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Algorithm 3.13 Ising model
(* initialize the lattice *)

do i := 1 to L
do j := 1 to L

lattice(i, j) := −1
(* Monte Carlo part *)

count := 0;
do mcs := 1 to mcsmax
begin

generate-one-sweep;
if mcs ≥ n0 then
begin
count := count + 1;
if count = nδ then
begin
count := 0;
do-analysis;

end
end

end

Algorithm 3.14 generate-one-sweep
do i := 1 to L

do j := 1 to L
begin
compute-the-energy-difference;
decide-to-flip-or-not

end

Algorithm 3.15 generate-one-sweep
do i := 1 to L

do j := 1 to L
begin
compute-the-energy-difference;
if random(iseed) < W (ΔH) then
flip-the-spin;

end

Recall from the above discussion that wewant to accept a spin flipwith a probabil-
ity W , which we take equal to the Metropolis function. Suppose we have computed
the energy difference ΔH. We can evaluate the probabilityW of accepting the move
because it depends only on this difference W (ΔH).

Choose a random number between 0 and 1. If the random number is less than the
computed transition probability we should flip the spin. Otherwise we should leave
the spin orientation as it was (Algorithm 3.15).
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Algorithm 3.16 look-up-table
real W (−4 : 4);
do j := −4 to 4 step 2

begin
W ( j) := 1;
if j > 0 then
W ( j) := exp(−2 ∗ Jkt ∗ j)

end

We realize that there is no need to evaluate the function W every time we want
to flip a spin. There are only 5 possible values for the energy difference (Exercise
3.34). The function can be precomputed and stored in an array for easy look-up. The
energy difference is given by

ΔH = 2si
J

kBT

∑

nn(i)

s j , (3.10)

where the symbol nn(i) denotes the 4 nearest neighbors of the central spin i .
There is only one problem left. We have to resolve the last heading where we

compute the energy difference. Here there is a branching point. We are faced with
the same decision as for the percolation problem. We must choose between different
boundary conditions. The bonds of every spin at the edges of the lattice cannot be
left dangling in the air. The spins must interact with nearest neighbors. For now we
elect to use the periodic boundary conditions.

One way to implement the periodic boundary conditions is to use the modulo
function. At the edges of the lattice, i.e., where for the central spin (i, j) either i is
1 or L or j is 1 or L we compute the nearest neighbors by

i p1 = i + 1 (mod L) (3.11)

im1 = i − 1 (mod L) (3.12)

j p1 = j + 1 (mod L) (3.13)

jm1 = j − 1 (mod L). (3.14)

This approach is very time consuming. Each evaluation of the modulo function
involves several arithmetic operations. Time is crucial. The innermost loop has to
be constructed so as to minimize the number of arithmetic operations. The solution
here is again to use a table. Actually we will need two tables. One for the “plus”
operation and one for the “minus” operation (Algorithm 3.17).

Now the algorithm to perform an importance sampling for the two-dimensional
Ising model is complete. All major parts have been worked out. For completeness
we give the full algorithm as Algorithm 3.18.
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Algorithm 3.17 look-up-table-for-mod
integer ip(1 : L), im(1 : L);
do i := 1 to L

begin
ip(i) := i + 1;
im(i) := i − 1;

end
ip(L) := 1;
tm(1) := L;

� Exercise 3.36. Program Algorithm 3.18. Choose some values for the parameter
Jkt and print out the evolution of the magnetization as a function of the Monte Carlo
steps.

STOP

Our premier goal is to determine the phase transition point, i.e., J/kBTc, for the two-
dimensional Ising model on the simple lattice. Of course, the analytic result for the
two-dimensional Ising model is known exactly [3.9]. This gives us the opportunity
to see how well the data analysis works.

In the discussion in Sect. 2.3 we learned that the phase transition point is smeared
out for systems of finite size. These finite-size effects depend on the boundary condi-
tions. The results for the order parameter and the susceptibilities for simple sampling
of the percolation problem turned out to be different. The same is true for thermally
driven phase transitions.

How can we determine the phase transition point when the data depend on the
system size as well as on the boundary conditions? The key to the solution of this
question is the scaling feature of the system near the transition point. Close to the
transition point we expect to find the scaling relations

m(T, L) = L−β/ν f̂
[
(T − Tc)L

1/ν
]
, (3.15)

χ(T, L) = Lγ /ν ĝ
[
(T − Tc)L

1/ν
]
. (3.16)

The scaling functions f̂ and ĝ depend on the details, i.e., on the boundary conditions.

�Exercise 3.37. Determine the order parameter and the susceptibility from the order
parameter fluctuations as a function of the temperature T and the linear system size L .
Do the simulations for free and for periodic boundary conditions. Evaluate also the
fourth moment of the magnetization.

STOP

Having obtained the raw data from Exercise 3.37 we can now analyze these using
the ideas of finite-size scaling. An example of such raw data is shown in Fig. 3.9.
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Algorithm 3.18 Ising model
integer lattice(1 : L , 1 : L);
integer ip(1 : L), im(1 : L);
real W (−4 : 4);

(* look-up-table-for-mod *)
do i := 1 to L

begin
ip(i) := i + 1;
im(i) := i − 1;

end
ip(L) := 1;
im(1) := L;

(* look-up-table *)
do j := −4 to 4 step 2

begin
W ( j) := 1;
if j > 0 then
W ( j) := exp(−2 ∗ Jkt ∗ j)

end
(* initialize the lattice *)

do i := 1 to L
do j := 1 to L
lattice(i, j) := −1;

(* Monte Carlo Part *)
count := 0;
do mcs := 1 to mscmax
begin
do i := 1 to L

do j := 1 to L
begin
ici := lattice(i, j);
ien := lattice(ip(i), j) + lattice(im(i), j)+
lattice(i, ip( j)) + lattice(i, im( j));

ien := ici ∗ ien
if ran f < W (ien) then
lattice(i, j) := −ici

end
if mcs ≥ n0 then

begin
count := count + 1;
if count = nδ then
begin
count := 0;
do-analysis;

end
end

end
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Fig. 3.9 Dependence of the magnetization and susceptibility on the linear lattice size L . The data
shown are for the two-dimensional Ising model

Before actually doing the finite-size scaling analysis we should reflect on the accu-
racy of the raw data. Were there enough initial configurations discarded? Recall that
close to the transition point the system relaxes into equilibrium with a characteristic
time τ

τ ∝ Lz,

where z is of the order of 2. Also, the configurations are dynamically correlated.
Recall that the dynamic correlation between the configurations reduces the sample
size (Sect. 2.3.8).

Before carrying on, can you answer the following question in the affirmative?

Did you accumulate the absolute value of the magnetization?

If the answer to the question is no you have to repeat all your simulations! But why?
The reason for doing so has been discussed in Sect. 2.3. Due to the finiteness of

the system we find that it is ergodic below the transition point. In an infinite system,
i.e., in the thermodynamic limit, there is no chance for the system to go from one
branch of the spontaneous magnetization to the other. For systems of finite size there
is a characteristic time, which depends on the system size, in which the system can
manage to cross over to the other branch. Those who carefully did the exercises, in
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Fig. 3.10 Evolution of the
magnetization as a function
of the Monte Carlo steps
(MCS). This figure shows
that for small systems the
magnetization changes
branches quite often

particular Exercise 3.36, should have noticed this phenomenon. Starting out from
the negative side, all spins were down. Then the system relaxed into equilibrium and
fluctuated around the equilibrium. Sometimes the magnetization changed to positive
values for temperatures below the transition point. An example where this happened
is shown in Fig. 3.10.

Simply averaging the magnetization would yield an incorrect value. It depends
on the number of times the system reversed its magnetization. To avoid the problem
the two branches are folded on top of each other by taking the absolute value of the
magnetization.

After this long discussion of the do’s and don’ts we can go ahead and determine
the transition point. For this we use the cumulant

UL = 1 − 〈m4〉L
3〈m2〉2L

. (3.17)

There is little extra cost in computing this quantity in the simulations. Here we
have to issue a warning. Quite often the data are such that a variable with single
precision is not sufficient for the accuracy needed. Valuable digits are lost using
a single precision variable which render the results absolutely useless. This point
cannot be emphasized enough.

To determine the transition point we choose pairs of linear system sizes (L , L ′).
The critical point is the fixed point where we have

UL = UL ′ . (3.18)
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Fig. 3.11 Analysis of the cumulants for the two-dimensional Ising model

At the transition point the cumulants for two different system sizes must intersect.
To put it differently, if we plot the ratio UL/UL ′ versus the temperature, then for all
pairs we should find a unique crossing at one particular temperature. This is the
transition point.

�Exercise 3.38. Carry out the cumulant analysis to determine the critical point of the
two-dimensional Ising model. Compare your answer to the exact value J/kBTc =
1
2 ln(1 + √

2).

STOP

Figure 3.11 shows an analysis of the cumulants for the two-dimensional Ising
model.

In practice the analysis of the data on the cumulants is not as straightforward as
it seems. To obtain a unique intersection point for all pairs (L , L ′) one has to work
fairly close to the expected critical point. This is usually an iterative process. A first
scan of the temperature range narrows down the interesting region by inspection of
the magnetization and the susceptibility. In the suspected critical region points are
selected for further simulation runs. For these points one needs very good statistics.
With the data a first analysis of the cumulants is made. It often happens that a unique
intersection cannot be found at this stage. More points with even better statistics are
needed.

Now that we have determined the phase transition point for the model we can
go on to the finite-size scaling analysis. All the data on the magnetization for the
different system sizes can be made to collapse onto a single scaling function. The
scaling function depends on the boundary conditions.
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The scaling depends also crucially on the exponents and on the transition point. If
the transition point was not determined precisely enough we will find a bad scaling
behavior, if we find scaling at all. If the exponents are not known precisely enough
then this will also show up in the scaling behavior.

Fortunately, for the two-dimensional Ising model we know the exponents exactly.
We also know the transition point exactly. We use this precise knowledge to see how
well the data obtained in Exercise 3.37 scale. If the scaling turns out to be poor, then
this reflects problems with the accuracy of the data.

For the scaling we plot on the x axis the variable

x ≡ (T − Tc) L
1/ν

and on the y axis we plot the variable

y ≡ m(T, L)Lβ/ν.

The data for the different system sizes should, when the correct values for the param-
eters Tc, β and ν are chosen, collapse onto a single curve. The converse statement
is also true. If upon varying the parameters Tc, β and ν all the data collapse onto
a single curve then we have found the critical point and the critical indices.

� Exercise 3.39. Carry out the finite-size scaling analysis for the magnetization.

STOP

To conclude this section we take up again the discussion on the accuracy of the
data. We learned in Sect. 2.3.8 that certain quantities are not self-averaging. Upon
going to larger system sizes the error in these quantities does not decrease. The error
is independent of the system size.

One such quantity exhibiting a lack of self-averaging is the susceptibility.We gain
nothing in accuracy by going to larger system sizes, we only have to work harder.

� Exercise 3.40. Confirm numerically that the susceptibility exhibits a lack of self-
averaging.

STOP

! Exercise 3.41. Carry out the finite-size scaling analysis for the susceptibility.

!Exercise 3.42.Glauber function. At the beginning of this section we introduced the
Glauber function as another possible choice of a transition probability employing
a single spin flip. Incorporate the Glauber function into your existing program for
the two-dimensional Ising mode. Redo some of the exercises in this section.

! Exercise 3.43. The Hamiltonian of the Ising model in a magnetic field H is given
by
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H = −J
∑

〈i, j〉
si s j − H

∑

i

si .

What are the possible changes in the energyΔH for a single spin flip? Redo Exercise
3.37.

Exercise 3.44 Invent a mapping which maps the two-dimensional simple lattice to
one dimension, such that all neighbors are evenly spaced. Use periodic boundary
conditions.

Exercise 3.45 Implement helical (= skew) boundary conditions.

Exercise 3.46 Checker-board algorithm. To efficiently run a programon a computer
with a pipeline architecture the algorithm must be in a vectorizable form. For the
vectorization of an algorithm for the two-dimensional Ising model it is useful to split
the lattice into two sublattices. There are several ways of doing so. One way is to
color the sites black and white like a checker board. The energy change on reversing,
say, a black site depends only on the white sites surrounding this site. All black sites
can be updated simultaneously! Write an algorithm for the two-dimensional Ising
model which employs the checker board idea.

Exercise 3.47 What problem corresponds to the limit T = ∞ in the Ising model?

Exercise 3.48 Interfaces. So far the boundary conditions we have employed have
been homogeneous. The boundary was either periodic or all sites of the boundary
were constrained to one fixed value. Consider a boundary like

Such a boundary produces an interface in the system. Use the program you developed
in this section and set up the boundary as shown above. Print out the configurations
you obtain.

Exercise 3.49 Kawasaki dynamics. The way we have treated the importance sam-
pling of the Ising model has been such that there was no constraint, beside the chosen
temperature, placed on the system. Sometimes we want to introduce a conservation
law. For example, we want the concentration of the +1 and the −1 spins to be fixed.
To realize a fixed concentration we introduce instead of single spin flips an exchange
between spins. Pick a pair of nearest-neighbor spins with different orientation and
exchange them. Compute the change in the energy and proceed as for the single spin
flip, i.e., if the move is rejected the pair is not exchanged. What are the possible
values for the change ΔH in the energy?
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Variations on a theme

Exercise 3.50 Potts model. The Hamiltonian of the Potts model is given by

HPotts = −
∑

〈i, j〉
Ji jδqi q j .

Here Ji j are exchange couplings which can be all identical. The variable q can take
on the values {1, 2, . . . , q}. Determine the critical point for the two-state Potts model.

Exercise 3.51 XY model. The XY model is an example of a model with continuous
degrees of freedom. There are no spins which can take on only discrete values. One
way to write the Hamiltonian for the XY model is

HXY = −
∑

〈i, j〉
Ji j cos(φi − φ j ) − H

∑

i

cosφi .

Here Ji j are exchange couplings which can be all identical; H is a magnetic field.
Write an algorithm for importance sampling of the XY model.

Exercise 3.52 Lennard–Jones. All sections have dealt entirely with examples where
a lattice was at least partly involved. This, of course, is not necessary for the appli-
cation of the importance sampling idea. Consider N point particles in a box of
volume V . The volume is chosen such that the simulation can be carried out for
a particular density �. The particles interact with each other via a Lennard–Jones
pair potential

Φ(ri j ) = 4ε
[
(σ/ri j )

12 − (σ/ri j )
6
]
.

Here, ri j is the distance between particle i and j ; ε specifies the unit of energy
and σ the unit of length. It is most convenient to work with scaled variables. An
importance sampling for the Lennard–Jones system proceeds as follows. Choose
a particle. Generate a random number r and displace the particle a distance δ derived
from the random number. Calculate the change in the energy. The acceptance of the
displacement is done completely analogously to the acceptance discussed in the text.
Write an algorithm and program it. Compute the average internal energy, specific
heat and pressure. How do you incorporate the boundary conditions?
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3.4.2 Self-avoiding Random Walk

To close the guide what could be more appropriate than an exercise:

� Exercise 3.53. Kink-jump. Consider the self-avoiding random walk on a simple
square lattice. We draw on the analogy with polymers and view the self-avoiding
walk as a chain of N beads and rods (or bonds and sites if you wish). To generate
new configurations pick a bead (or site) at random. If the bead is an end bead it could,
in principle, be moved in three directions. If the bead is not an end bead a “kink”
type motion could be made:

1. Plot a few examples of conformations of a chain and list the possible motions of
the beads.

2. Invent an algorithm for the kink-jump method. What kind of sampling are you
doing?

3. Do you see ergodicity problems?
4. So far we have not considered interactions between the beads. Suppose there is

an interaction ε between beads similar to the exchange interaction in the Ising
model. Invent an algorithm for a simulation of this model. What kind of sampling
are you doing?
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Chapter 4
Cluster Algorithms and Reweighting
Methods

4.1 Introduction

Roughly at the time (1987) when the manuscript for the first three chapters of the
present book was completed, several breakthroughs occurred. They had a profound
influence on the scope of Monte Carlo simulations in statistical physics, particularly
for the study of phase transitions in lattice models.

The first of these remarkable developments is the invention of the “cluster algo-
rithms” [4.1–4.54] that reduce (or eliminate completely) the problem of “critical
slowing down” (divergence of relaxation times near the critical point, see e.g., (2.85),
(2.86) [2.59]) from which the single spin-flip algorithms suffer, since the increase of
relaxation time means a dramatic increase of statistical errors; see, e.g., (2.87). The
original version [4.1], proposed for the Ising model, is based on the mapping [4.55]
between Potts models [2.106] and percolation [2.60], but meanwhile extensions exist
to a wide variety of models, including also isotropic magnets [4.7, 4.9] and various
quantum spin systems [4.54]. In this chapter, only the original version (for Ising
and Potts problems) will be considered, however. Here we briefly outline the main
physical idea: critical slowing down in the kinetic single-spin-flip Ising model [2.12]
can be attributed to the fact that the long-range critical spin correlations correspond
to the occurrence of large clusters of correlated spins. It takes a very long time until
such a cluster disintegrates and finally disappears by many subsequent single spin
flips. However, if the basic move is not a single spin flip but the overturning of
a whole cluster, the cluster pattern changes rapidly and one thus can move much
faster through phase space, even close to the critical point. Of course, the “art” is to
construct the clusters that are considered for flipping such that at the same time one
has a high acceptance rate for such a move, even if the cluster is very large, and that
one destroys physical correlations by the successive action of the algorithm. There
is no general recipe for how one can construct such an algorithm for a particular
model – in some cases, where critical slowing down is very dramatic, like in spin
glasses [2.41], intensive searches for efficient cluster algorithms have been made
but have so far failed.
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Another line of research, based on the idea thatMonteCarlo updates should reduce
the problem of critical slowing down if they operate on all length scales simultane-
ously, not only on the length scale of the lattice spacing as the single spin-flip-type
algorithms do, is known as “multigrid Monte Carlo” [4.56–4.61]. However, often
the asymptotic behavior does not change qualitatively: i.e., the dynamic exponent
z in the relation between relaxation time τ and linear dimension L , τ ∝ Lz (2.86),
remains the same as in the single spin-flip-type algorithm. But the constant of pro-
portionality in this relation may get markedly smaller (a decrease by a factor of
10 was often reported [4.60]). Nevertheless, we shall not deal with this approach
here further, noting that it also lacks another advantage that the “cluster algorithms”
have, namely that the latter yield in a very natural way “improved estimators” for
various quantities: expressing quantities like susceptibilities [4.7, 4.96], pair correla-
tion functions [4.7, 4.25], fourth-order cumulants [4.62], etc., in terms of “clusters”
rather than using the original formulation in terms of spins, one exploits the fact that
there are no correlations between different clusters, and hence the statistical noise is
reduced.

The second important development that we shall discuss is the reanimation [4.63]
of the old idea [4.64, 4.65] of “reweighting”: from a simulation at a single state
point (characterized in an Ising model by choice of temperature T and magnetic
field H ) one does not gain information on properties precisely at that point only, but
also in the neighboring region. Extensions and variations of this concept are indeed
very promising and powerful [4.46, 4.66–4.69]. The simplest approach, the “single
histogram method” [4.63], starts from the observation that the distribution of the
energy P(E, T ) at temperature T can be obtained from the distribution P(E, To) at
a neighboring temperature To by

P(E, T ) = P(E, To) exp[−(1/T − 1/To)E/kB]/
∑

E

P(E, To)

× exp[−(1/T − 1/To)E/kB]. (4.1)

Of course, in this simple form the method is useful only either for rather small
systems [where P(E, To) is sufficiently broad since the width of the distribution
scales with L−d/2, assuming a d-dimensional cubic box of linear dimension L as
the simulation volume] or at a critical point, as first recognized by Ferrenberg and
Swendsen [4.63]: due to the critical fluctuations, the distribution is broadened over
a width of order L−1/ν , where ν is the critical exponent of the correlation length.
Since in a finite-size scaling analysis, see (2.79) and (2.80), the region of interest is of
the order of |1 − T/Tc| ∝ L−1/ν , the region of interest in finite-size scaling is of the
same order as the region in temperature accessible for reweighting. Of course, there
still is a problem in the wings of the distribution, where due to reweighting statistical
errors may get greatly magnified, but this problem is eased by the combined use
of several histograms at suitably chosen neighboring temperatures (or other control
parameters), the so-called “multiple histogram extrapolation” [4.46, 4.66, 4.70].
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Particularly interesting are also reweighting schemes built into the simulation pro-
cedure: again this is an old idea under the name of “umbrella sampling” [4.71–4.73],
but gained full strength in a version of the technique which is called “multicanonical
Monte Carlo” [4.67, 4.74] or “multimagnetic ensemble” [4.75–4.77] (reweighting
with respect tomagnetization rather than energy). These techniques havenowbecome
standard tools for the study of asymmetric first-order transitions, interfacial free ener-
gies, etc., when one combines them suitably with finite-size scaling ideas, as will be
discussed below.

A related approach (“simulated tempering” [4.78], “expanded ensemble” [4.79])
considers the temperature just as an additional degree of freedom, specifying properly
transition rules for jumping from one temperature to another one. In this context, we
note also the “broad histogram method” and related methods [4.80] which focuses
on sampling the density of states g(E) directly.

In this chapter, we cannot attempt to give a full account of all these techniques
(or further variations to this theme [4.81–4.84]). Thus, in Sect. 4.3 we shall describe
a “case study” which nicely illustrates the power of the approach, but also hints to
some of the problems that have to be taken care of. Similarly, Sect. 4.2 describes
another “case study” where the Swendsen–Wang cluster algorithm [4.1] is used in
conjunction with finite-size scaling techniques. Finally, Sect. 4.4 discusses some of
the advances that recently have been made in the application of finite-size scaling
methods themselves, in particular the concept of “field mixing” [4.85–4.94] that
has enabled the study of critical phenomena in asymmetric systems such as liquid–
gas transitions [4.85–4.89], unmixing of polymer solutions [4.90], etc. Also the
problem of “crossover” [4.95] from one “universality class” [4.96] to another will be
mentioned and possible treatments by simulation methods indicated [4.97–4.101].

4.2 Application of the Swendsen–Wang Cluster Algorithm
to the Ising Model

If the reader compares the finite-size scaling description for the Ising model, e.g.,
(2.72) and (2.80), to the corresponding results for the percolation problem, (2.63)
and (2.64), he will note a complete formal analogy (of course, the explicit form of the
scaling functions and the critical exponents of both problems must differ, since these
problems constitute different universality classes [4.96], but the general structure is
the same). This analogy is no surprise at all, since the mapping proved by Fortuin
and Kasteleyn [4.55] implies that bond percolation is equivalent to the limit q → 1
of the q-state Potts model [2.106], cf. (2.106) for a definition of this model (note that
the case q = 2 is nothing but the Ising model). As a consequence, the thermal order–
disorder transition of the Ising model (and related spin models) can be described as
a percolation of “physical clusters” [4.102, 4.103].
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Of course, it has been known for a long time that any state of the Ising lattice can be
described in terms of “geometrical clusters” of, say “down spins” in a surrounding
background of “up spins” [4.104, 4.105]. However, throughout the paramagnetic
phase we encounter a percolation transition of these “geometrical clusters” when
we vary the magnetic field H from strongly positive to negative values. The clue
to identify “physical clusters” in contradistinction to “geometrical clusters” is the
concept of “active bonds” [4.102].No suchbonds canoccur between spins of opposite
sign, while for a pair of neighboring spins the probability p for a bond to be active is

p = 1 − exp(−2J/kBT ) , (4.2)

and only spins connected by “active” bonds form a “physical cluster”. Actually (4.2)
can be extended to ferromagnetic interactions of arbitrary range [4.51], not restricted
to nearest neighbors, and very efficient cluster algorithms have been developed for
such long-range Ising models [4.51], but this is out of consideration here.

This interpretation, as stated above, can be rigorously proven by the percolation
representation of the partition function of the Potts model [4.55], i.e.,

ZPotts = Tr{σi } exp(−HPotts/kBT )

=
∑

pNb(1 − q)Nm qNc , (4.3)

where Nb is the total number of active bonds on the lattice in a configuration, Nm the
total number of missing bonds, and Nc the total number of clusters. The sum is over
all configurations of active bonds. Note that in the q-state Potts case every spin of
a cluster must be in the same state of the q possible states, but the different clusters
are completely uncorrelated, so the state of a cluster is independent of the states of all
the other clusters. In (2.106) and (4.3) no symmetry-breaking field singling out one
of the states was included, and hence integrating out the spin states for any cluster
simply gives a factor q in (4.3).

How can one use (4.3) to construct aMonte Carlo algorithm? The recipe proposed
by Swendsen andWang [4.1, 4.46] proceeds in two steps: first, the spin configuration
of the lattice is used to assign to the system a configuration of active bonds, using
(4.2) and attaching a bond if p exceeds the random number ζ drawn uniformly from
the interval [0,1] and attaching no bond if p < ζ . As mentioned above, no bonds are
assigned between sites with different spin values. This step yields a configuration
of bonds that form clusters of spins, with all spins in each cluster having the same
value.

The second step consists in choosing at random new values of the spins, with the
constraint that every spin in a cluster must have the same new value. In this way,
a new spin configuration of the lattice will result, and the process is repeated again
and again.
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This algorithm is ergodic, since the probability of going from a configuration to
any other configuration in a single “sweep” through the lattice is nonzero, and it
satisfies detailed balance.

We do not discuss the extensions to include magnetic fields, antiferromagnetic
interactions [4.46], isotropic spins or lattice gaugemodels [4.47], etc., but rather treat
the analysis of results in the framework of simulations utilizing this algorithm [4.25].

For expressing the variables of interest for an Ising model (q = 2) in terms
of clusters, it is convenient to use two “cluster coordinates” [4.105], the cluster
magnetization mcl = ±l for a cluster containing l sites (the sign specifies the ori-
entation of the spins inside the cluster; we label clusters by the index “cl”), and the
number of active bonds in the cluster which we denote as ucl p. Defining then the
number of clusters with these properties per lattice site as p(mcl, ucl), magnetization
and energy per spin for a lattice of coordination number z are given by (remember
that H = 0)

〈M〉 =
∑

mcl

mclP(mcl), P(mcl) ≡
∑

ucl

p(mcl, ucl), (4.4)

E = 〈HIsing〉/N = − z

2
J

(
∑

mcl

∑

ucl

p(mcl, ucl) − 1

)

= − z

2
J (p〈Nb〉/N − 1), (4.5)

recalling that Nb is the total number of active bonds in a configuration, and N is the
number of lattice sites (N = Ld for a hypercubic lattice of linear dimension L in
d dimensions). In addition, the specific heat and susceptibility can be expressed in
terms of clusters, e.g.,

C = ∂E/∂T = [
1/

(
NkBT

2
)] (

〈H2
Ising〉 − 〈HIsing〉2

)

= 1

4
z2 J 2/

(
NkBT

2 p2
) [〈N 2

b 〉 − 〈Nb〉2 − (1 − p)〈Np〉
]
. (4.6)

Splitting off the contribution of the largest cluster in the system, which we denote as
m∞

cl , from P(mcl),
P(mcl) ≡ P ′(mcl) + (1/N )δmcl ,m

∞
cl , (4.7)

we see that the absolute value of magnetization differs from the percolation proba-
bility 〈P∞〉, due to contributions from the smaller clusters

〈|M |〉 =
〈∣∣∣
m∞

cl

N
+

∑

mcl

mclP
′(mcl)

∣∣∣
〉
, 〈P∞〉 = 〈∣∣m∞

cl

∣∣〉/N . (4.8)
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Now the susceptibility for T > Tc is just the analog of the percolation susceptibility,
(2.60), namely

kBTχ = kBT (∂〈M〉/∂H)T, H=0 =
∑

mcl

m2
clP(mcl) =

∑

l

l2nl (4.9)

since P(mcl) + P(−mcl) = nl , the number of clusters of size l, apart from a diff-
erent normalization factor (1/p) used there, and the fact that one removes the largest
cluster from the summation in (2.60) in order to work with the same formula on both
sides of the percolation threshold. In (4.9), the largest cluster should not be omitted
if one wishes to maintain the fluctuation relation kBTχ = N 〈M2〉 for T ≥ Tc and
H = 0; see (2.77a).

Now for T < Tc one must single out the contribution from the largest cluster
(that becomes the percolation cluster for N → ∞ and then carries the spontaneous
magnetization) to obtain [4.25]

kBTχ ′ ≡ N
(〈M2〉 − 〈|M |〉2) =

∑′
l
l2nl + N

(〈P2
∞〉 − 〈|M |〉2)

≈
∑′

l
l2nl + N

(〈P2
∞〉 − 〈P∞〉2) . (4.10)

The obvious physical interpretation of (4.10) is, of course, that the response function
for T < Tc picks up contributions both from all finite clusters (the term

∑′
l l

2nl , only
considered in the percolation problem) and from the fluctuations in size of the largest
(percolating) cluster.

It turns out that estimating χ, χ ′ from these relations in terms of clusters is advan-
tageous in comparison with the standard magnetization fluctuation relations: Equa-
tions (4.9) and (4.10) already exploit the fact that there are no correlations between
different clusters, thus the statistical noise is reduced. The right-hand sides of these
equations hence are examples for the use of “improved estimators”. Figure 4.1 shows
an example for the d = 2 Ising square lattice. It is clearly seen that for finite systems
the percolation probability 〈P∞〉 is always smaller than 〈|M |〉, as expected from (4.8),
although in the limit N → ∞ both quantities converge to the spontaneous magneti-
zation. Note, however, that even for N → ∞ the term N (〈P2∞〉 − 〈P∞〉2) must not
be neglected in kBTχ ′ in comparison to

∑′
l l

2nl for T < Tc, although it is negligible
for T > Tc. This observation corroborates our conclusion; cf. (2.80d) and Fig. 2.15,
that due to spontaneous symmetry breaking one needs to use different fluctuation
formula above and below Tc, unlike the percolation case where only

∑′
l l

2nl applies
on both sides of the percolation threshold.

As an example of application for which the use of a cluster algorithm was indis-
pensable, we mention the study of shape effects on finite-size scaling [4.106]. Let
us consider anisotropic subsystems of shape L⊥/L‖ with the linear dimensions L‖,
L⊥ in the x, y directions different from each other, for a two-dimensional Ising sys-
tem (the total system size L × L → ∞). At Tc from the exact results on the critical
correlations (g(r) ∝ r−η, η = 1

4 ), one can deduce that [4.106]
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Fig. 4.1 aMagnetization
(solid curves) and
percolation probability
(broken curves) for the d=2
nearest-neighbor Ising
ferromagnet plotted versus
reduced temperature for the
three system sizes indicated.
Periodic boundary
conditions were used
throughout, and all data were
generated with the algorithm
of Swendsen and Wang [4.1].
(From [4.25]). b Normalized
fluctuation of the largest
cluster, N (〈P2∞〉 − 〈P∞〉2)
(solid curves) and second
moment of the cluster size
distribution,

∑′l2nl (broken
curves) plotted versus T/Tc,
for the same model as in a.
(From [4.25])
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kBTcχ(Tc) = (L‖L⊥)1−η/2χ̃(L‖/L⊥), χ̃(ζ ) = χ̃

(
1

ζ

)
∝ ζ−η/2. (4.11)

This structure can also be deduced from conformal invariance [4.107]. Since [4.104]
γ /ν = 2 − η, extracting a factor (L‖/L⊥)1−η/2 from the scaling function χ̃ , (4.11)

can be rewritten in the form kBTcχ(Tc) = Lγ /ν

‖
≈
χ(L‖/L⊥), with ≈

χ another scaling
function. This behavior is tested in Fig. 4.2, using subsystems in the range 4 ≤ L‖,
L⊥ ≤ 128, for L = 1,024 (Fig. 4.2). Of course, L � L‖, L⊥ is indispensable for
(4.11) to be valid. Since with a standard single spin-flip algorithm the relaxation
time scales as τ ∝ Lz with z ≈ 2.14 ± 0.05 [4.108], it would be extremely hard to
generate many uncorrelated configurations of a lattice of this size L = 1,024 at Tc.
Thus the present problem can only be treated with the help of a cluster algorithm.

One caveat, however, must be mentioned: cluster algorithms seem to be much
more sensitive to correlations among the pseudorandom numbers than the sin-
gle spin-flip type algorithms [4.109]. For this reason it is often advisable to ran-
domly mix in single spin-flip sweeps through the lattice, in addition to the “cluster
moves” [4.109].
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Fig. 4.2 Log2–log2 plot of kBTcχ(Tc)L
−γ /ν
‖ versus L⊥/L‖ using subsystems of the linear dimen-

sions L⊥, L‖ = 4, 8, 16, 32, 64 and 128, for a 1,024 × 1,024 square lattice studied with the
Swendsen–Wang algorithm [4.1]. The curve is an approximate calculation of the scaling function.
(From [4.106])

4.3 Reweighting Methods in the Study of Phase Diagrams,
First-Order Phase Transitions, and Interfacial Tensions

In this section, we return to the use of “histogram reweighting techniques” already
alluded to in (4.1).We first treat the single histogrammethod and consider over which
regionΔβ of the inverse temperature β around the reference state at βo a reweighting
is possible [4.63–4.65]. First we note that the energy distribution P(E, To) has a peak
of width, cf. (2.33)

βoδE = [
C(βo)kBL

−d
]1/2

, T �= Tc, (4.12)

C(β) being the specific heat at inverse temperature β. Also the shift of the position
of the maximum of P(E, T ) relative to the maximum of P(E, To) is controlled
by the specific heat, ΔE = C(βo)(T − To) ≈ C(βo)(βo − β)/β2

o . The maximum
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Δβ = βo − β that gives reliable results occurs when ΔE ∝ δE , so that

(Δβ)max/βo ∝ [
C(βo)L

d/kB
]−1/2

, T �= Tc, (4.13)

i.e., the range ofΔβ over which reweighting is possible decreases like the square root
of the simulation volume. Ifwework at the critical point, however, and consider a sys-
tem whose specific heat diverges like C ∝ (T − Tc)−α , we must take into account
finite-size rounding of this divergence to useC(βo) ∝ Lα/ν if βo = 1/Tc. In this case
(Δβ)max/βo ∝ L−(d+α/ν)/2 ∝ L−1/ν , where in the last step the hyperscaling relation
dν = 2 − α [4.96] was used. However, the region ΔβL1/ν = const is exactly the
region of interest for finite-size scaling (see Chap. 2). As a consequence, a single
histogram is enough to cover a finite fraction of the region needed to study the finite-
size scaling behavior, and a finite number of neighboring histograms thus suffices to
explore the full region of interest for finite size scaling.

Another obvious extension is that onemaywish to carry out a reweighting not only
with respect to temperature but also with respect to other thermodynamic variables.
For example, consider a symmetrical polymer mixture [4.110–4.113]: We consider
a lattice containing two types of polymers (A,B) with chain lengths NA = NB = N ,
the numbers of chains being nA, nB, with the total number n = nA + nB being held
fixed so the total polymer density is constant. The polymer chains may be modelled
either as self-avoidingwalks [4.113] (Sect. 2.1.3) or by the so-called bond-fluctuation
model [4.114], where each effective monomer takes all 8 sites at the corners of an
elementary cube of the simple cubic lattice. In any case, one assumes short-range
pairwise interactions εAA = εBB, εAB between the effective monomers, which may
lead to phase separation if ε = εAB − (εAA + εBB)/2 > 0. The order-parameter of
such an unmixing transition can then be defined as m = (nA − nB)/(nA + nB). In
this problem it is clearly advantageous not to work in the canonical ensemble of
the mixture (all particle numbers nAN , nBN being fixed, and hence also m = const)
but in the semi-grand canonical ensemble of the mixture, where T and the chemical
potential difference Δμ of the mixture are the given independent thermodynamic
variables. Note that if we considered a mixture of monomers (N = 1) in the frame-
work of the Ising model, Δμ simply corresponds to the magnetic field H , and m to
the magnetization [4.115]. The semi-grandcanonical partition function ZSG(T,Δμ)

then can be related to the density of states Γ (E,m) as

ZSG(T,Δμ) =
∫ +1

−1
dm

∫
dE exp(−E/kBT ) exp[NΔμmn/(2kBT )]

× Γ (E,m) . (4.14)

Note that chemical potentials μA, μB of the two species were normalized per
monomer, so the Boltzmann factor exp[(μAnAN + μBnBN )/kBT ] = exp[N (μA +
μB)n/(2kBT )] exp[NΔμmn/(2kBT )], and the first factor exp[N (μA + μB)n/

(2kBT )] is omitted since n is constant, and this factor hence cancels out from all
averages. The Monte Carlo sampling yields a number N of configurations that are
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distributed proportional to PT,Δμ(E,m),

PT,Δμ(E,m) = 1

ZSG(T,Δμ)
exp(−E/kBT ) exp[NΔμmn/(2kBT )]Γ (E,m).

(4.15)
We record a “histogram” HT,Δμ(E,m) in a simulation by just counting howoften one
observes the possible values of E and m (for very large lattice sizes, and generally
for continuous degrees of freedom, some binning in suitable intervals δE , δm may
be required, but this is not discussed further here). This histogram is now used for
a whole range of neighboring values T ′, Δμ′ around T , Δμ by reweighting

PT ′,Δμ′(E,m) ≈ ZSG(T,Δμ)

ZSG(T ′,Δμ′)
exp

(
Δμ′mNn
2kBT ′ − ΔμmNn

2kBT

)

× exp

(
E

kBT
− E

kBT ′

) HT,Δμ(E,m)

N . (4.16)

Figure 4.3 shows that this “single histogram extrapolation” is indeed of practical use-
fulness for the Monte Carlo study of the critical region of polymer mixtures [4.112].
Note that phase coexistence for a symmetric mixture occurs for Δμ = 0 as studied
there, and thus P(m) is symmetric around m = 0, with two peaks for T < Tc (the
peak for m < 0 corresponds to the B-rich phase, the peak for m > 0 corresponds to
the A-rich phase) which merge into a single peak as the temperature is raised above
Tc. Of course, Fig. 4.3 is just an illustration of the behavior postulated in (2.73)
and (2.74).
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Fig. 4.3 Distribution function P(m) = ∫
dEPT,Δμ(E,m) of the order-parameter m of a polymer

mixture plotted for Δμ = 0 over a range of temperatures for N = 128, −εAA = −εBB = εAB =
ε/2, and a density φ = 0.5 of occupied lattice sites, and a lattice size L = 80 lattice spacings.
Using the bond-fluctuation model on the simple cubic lattice,N = 16,800 statistically independent
samples at kBT/ε = 266.4 were used to generate P(m) over a range of temperatures from single-
histogram extrapolation. (From [4.112])
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As mentioned above, it is often desirable to combine histograms from several
simulation runs to get extrapolations over a wider parameter range and to increase
the accuracy [4.66]. If k simulations are performed at parameters [(Ti ,Δμi ), i =
1, . . . , k], the generalization of (4.14)–(4.16) reads [Ni is now the number of states
recorded in simulation i for the histogram HTi ,Δμi (E,m)],

Γ (E,m) =
k∑

i=1

wi (E,m)
1

Ni
ZSG(Ti ,Δμi ) exp[−NΔμimn/(2kBT )]

× exp(E/kBTi )HTi ,Δμi (E,m). (4.17)

The weight wi with which the histogram of the i th simulation enters is determined
by minimizing the statistical error of Γ (E,m) and is found as [4.46, 4.66, 4.111]

wi (E,m) = w′
i (E,m)/

k∑

j=1

w′
j (E,m), (4.18)

where

w′
i (E,m) =(1 + 2τi )

−1Ni Z
−1
SG(Ti ,Δμi ) exp[NΔμimN/(2kBTi )]

× exp(−E/kBTi ), (4.19)

τi being the correlation time (measured in Monte Carlo steps per monomer if every
step is used for the recording of the histograms, while τi = 0 if enough steps are omit-
ted between subsequent recordings such that all Ni configurations that are used are
statistically independent). Note that only the product wi ZSG(Ti ,Δμi ) enters (4.17)
and from (4.19) we see that no knowledge of the absolute free energy is required.
Figure 4.4 gives an example where this technique was used to obtain moments 〈|m|〉,
〈m2〉 over a broad temperature range for three lattice sizes [4.112]. Obviously, such
techniques are a great advantage for a precise estimation of the critical point: while in
the traditionalmethod (as described inChap. 2, e.g., Fig. 2.14a) the data are generated
point by point and curves drawn to guide the eye always are somewhat subjective,
from the density of states based on several histograms, (4.15), the smooth curves
in Fig. 4.4 result in a well-defined way, and many application examples meanwhile
testify for the success and accuracy of these methods.

The full power of these histogram extrapolation techniques becomes apparent,
however, when we consider asymmetric mixtures. In a lattice model containing A,B,
and vacancies, the simplest type of asymmetry occurs if εAA �= εBB: then the sym-
metry of the problem against interchange of A and B is broken, and phase coexis-
tence (including criticality) no longer occurs forΔμ = 0 but along a nontrivial curve
Δμcoex(T ) in the (Δμ, T ) space.And for finding the critical pointΔμc = Δμcoex(Tc)
it is obvious that a search in the two-dimensional space point by point would be very
cumbersome, while histogram extrapolations still are convenient [4.116, 4.117].
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observed at those temperatures where actual simulations were made, while the dash-dotted curves
result from the histogram extrapolation, as well as the curves in part (b), where Tc = 277.7ε/kB was
extracted from the intersection of the curves. Using this estimate for Tc in a finite-size scaling analy-
sis of the data in part (a), the estimate for the order-parameter (solid curve, labelled as “binodal”) is
obtained. The dotted curve with asterisks (marked “spinodal”) illustrates the result of a mean-field
concept, namely the inverse “susceptibility” χ−1(T,m) is extrapolated and the spinodal curve is the
locus of the points where this extrapolation vanishes, χ−1(T,m = msp(T )) = 0. (From [4.112])

In this case one proceeds again by the “equal weight rule”, which we have already
encountered in Sect. 2.3.7 as a criterion to locate a first-order phase transition: there
we have considered the Ising model for T < Tc as a function of the magnetic field H ,
and found that the twoGaussianpeaks centered at positive andnegativemagnetization
change their weights according to the Boltzmann factors exp(±mHLd/kBT ). In this
case symmetry requires the weights to be equal for H = 0, while in the present case
H corresponds to μ′ ≡ [Δμ − Δμcoex(T )]/ε, and finding the state of equal weight
(μ′ = 0) is nontrivial.We can define theseweights for theA-rich andB-rich phases as

PA-rich =
∫ 1

m�

P(m)dm, PB-rich =
∫ m�

−1
P(m)dm, (4.20)
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Fig. 4.5 a The fluctuation of the order-parameter m, n(〈m2〉 − 〈|m|〉2) for the bond-fluctuation
model of a polymer mixture with NA = NB = N = 32 but energetic asymmetry (εAA = λεBB
with λ = 5, while εAB = −εBB ≡ ε). For a lattice linear dimension L = 56 the system contained
n = nA + nB = 343 polymer chains. From a few state points for which actual simulations were
performed, the fluctuation is obtained in a broad region of the (T,Δμ) plane by histogram reweight-
ing. The maximum of the ridge yields a rough first estimate of the critical temperature, Tc. The
order-parameter 〈m〉 along the ridge can be identified withm� in (4.18). b The ratio R of the weights
PA−rich, PB−rich plotted in the same region of the (T ,Δμ) plane as part (a). Here R is defined as the
minimum value of PA−rich/PB−rich and its inverse, so it can only vary between zero and one, and the
location of the maximum in the (T ,Δμ) plane then yields the coexistence curveΔμ = Δμcoex(T ),
see part (c). c Phase diagrams of the asymmetric polymer mixture in the (T , Δμ) plane plotted for
four values of χ (for λ = 1 the mixture is symmetric, then Δμcoex ≡ 0 by symmetry, while in all
other cases a nontrivial offset occurs). The critical points (marked by circles) are found by studying
the ratio 〈m2〉/〈|m|〉2 versus T along the curve μcoex(T ) for the three lattice sizes L = 32, 40 or
56, respectively. (From [4.117])
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where m� is the location of the minimum between the two peaks of P(m) {note that
m� = 0 in the symmetric case, see Fig. 4.3; in the asymmetric case, estimates for
m� can conveniently be extracted from the maximum of 〈m2〉 − 〈m〉2 or the reduced
connected fourth order cumulant 〈m4〉conn/[3〈m2〉2], as shown byDeutsch [4.117]}.
Figure 4.5 demonstrates that indeed very good accuracy can be obtained. The fact
that from Monte Carlo runs just at a few state points {Ti , Δμi} one is able to
obtain all thermodynamic functions of interest in a broad region of the (T,Δμ)
plane is absolutely crucial for this analysis. The conclusions about this phase diagram
(Fig. 4.5c) are corroborated by the finite-size scaling analysis of the first-order phase
transition as well: Figure 4.6 gives a three-dimensional counterpart to Fig. 2.21b,
demonstrating that the concepts developed in Chap. 2 for the simple Ising model do
straightforwardly carry over to much more complex systems, such as asymmetric
polymer mixtures.

Finally, we mention that sampling of the minimum of distributions as shown in
Fig. 4.3 yields information on the interfacial tension [2.70, 4.70–4.75].

|

4.4 Some Comments on Advances with Finite-Size
Scaling Analyses

The extension of finite-size scaling techniques to the case of mixtures with energy
asymmetry [4.116, 4.117] is rather straightforward, since in the (Δμ, T ) plane the
coexistence curve μcoex(T ) still has a (nearly) vanishing slope at criticality, r =
(Tc/ε)dμcoex(T )/dT |Tc ≈ 0 (Fig. 4.5c). The situation is no longer so simple, when r
is appreciably different from zero, as happens for polymer mixtures with asymmetry
in the chain lengths [4.118], polymer solutions [4.90] and ordinary Lennard–Jones
fluids [4.85–4.88, 4.93, 4.94]. Then, the scaling fields and scaling operators are no
longer t = ε/kBTc − ε/kBT (temperature-like variable),μ′ = (Δμ − Δμcrit)/kBTc
(field-like variable), � (concentration or density, respectively), u (energy density),
but linear combinations thereof [4.119]

τ = t + sμ′, h = μ′ + r t, (4.21)

and thermodynamically conjugate to these fields (τ, h) are the order-parameter M
and energy-like density E ,

M = (� − su)/(1 − sr), E = (u − r�)/(1 − sr). (4.22)

The geometric meaning of the other field-mixing parameter s is given as s = tanψ

where ψ is the angle between h and the ordinate at criticality. In an Ising ferro-
magnet, of course, this problem is completely absent, because the order-parameter
(magnetization) is odd in the spin variables, the exchange energy is even in the spin
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variables, and already this symmetry implies that there cannot be any field mixing.
Already for the liquid gas transition the situation is completely different, of course,
since there is no simple symmetry relating liquid and gas, and therefore the density
� is not the optimal choice for the order-parameter field. Subtracting off the scaling
operators at criticality,

δM ≡ M − 〈M〉crit, δE ≡ E − 〈E〉crit, (4.23)

the joint distribution pL(M, E) then acquires a simple finite size scaling form
[4.93, 4.94]

PL(M, E) ≈ (aMaE)−1Ld+β/ν−1/ν p̃
(
a−1
MLβ/νδM, a−1

E Ld−1/νδE,

aMLd−β/νh, aEL1/ντ
)
, (4.24)

where β and ν are critical exponents of the order-parameter and the correlation
length as usual, aM, aE are two (non-universal, i.e., system-dependent) scale factors,
while the scaling function p̃ then is universal. From (4.22)–(4.24) we recognize that
integrating out E the scaling of PL(M) = ∫

dEpL(M, E) is exactly the same as the
scaling of the order-parameter distribution pL(s) considered in (2.79). In contrast,
if we consider the simple distribution pL(φ, u) rather than pL(M, E), which can
be found by using (4.22) in (4.24), we see that scaling powers Ld−1/ν(� − �crit) and
Lβ/ν(u − ucrit)would also result. As a consequence, the scaling behavior of� and u is
not simple, and somewell-known recipes (like extracting the specific heat exponentα
from the energy fluctuations, which works in an Ising model as C Ising

H=0 = Ld(〈u2〉 −
〈u〉2)/kBT 2 ∝ Lα/ν are no longer true: energy density fluctuations in asymmetric
systems also scale with the susceptibility exponent γ

Ld
(〈u2〉 − 〈u〉2) /kBT

2 ∝ Lγ /ν, (4.25)

while the specific heat exponent α shows up in the fluctuation of the energy-like
variable [4.93, 4.94]

Ld
(〈E2〉 − 〈E〉2) /kBT

2 ∝ Lα/ν. (4.26)

Another consequence of (4.24) is that the scaling function P̃ of PL(M) is identical
to the scaling function of the Ising model, considered in (2.79). The latter can be
recorded with fairly good accuracy, however, and hence Wilding [4.93, 4.94] sug-
gested the use of this information for the analysis of the asymmetric systems, by
adjusting the critical parameters {ε/kBTc, μ/kBTc} such that an optimal fit of P̃
onto the Ising model scaling function is achieved. In this way one can avoid the
otherwise necessary variation of L over a wide range, and explore the critical region
of asymmetric systems with manageable effort. While far below Tc phase coexis-
tence of asymmetric off-lattice models of fluids can be conveniently studied with the
so-called “Gibbs ensemble” [4.120, 4.121, 4.122, 4.123], near the critical point the
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“field mixing” analysis techniques as developed by Wilding and coworkers [4.85–
4.94] is the method of choice.

We conclude this section by drawing attention to the problems that finite-
size scaling methods still encounter due to crossover [4.95] from one “universal-
ity class” [4.96] to another [4.92, 4.97–4.101]. There are many examples where
this occurs for physical systems. (1) Heisenberg ferromagnets with weak uniaxial
anisotropy show a crossover from the Heisenberg class to the Ising class as Tc is
reached [4.95, 4.124]. (2) Ferromagnetsweakly dilutedwith a non-magneticmaterial
exhibit a crossover to a new class of critical behavior typical for randomly quenched
disorder (see, e.g., [4.125] for a review). Another crossover is expected for systems
in random fields [4.126]. Monte Carlo studies of systems with quenched disorder
would be very valuable, since other techniques are not so conclusive about the prop-
erties of these systems, but the analysis of the simulations is manifestly hampered
by crossover problems [4.127–4.131]. (3) Systems close to a multicritical point, e.g.,
a tricritical point [4.92, 4.132] cross over from multicritical behavior to “ordinary”
critical behavior. (4) Systems with a large but finite range of interaction cross over
from Landau-like critical behavior towards a nontrivial critical behavior close to Tc
[4.99, 4.100, 4.133]. Analogous crossover to Landau behavior also occurs in sym-
metrical polymer mixtures, when the chain length N → ∞ [4.97, 4.98, 4.134] and
in Ising films with competing walls when their thickness D → ∞ [4.101].

T t

Tm

Tc(p): tc=g1/φ/y
tcross=g1/φ/ycross

g

Pm P

Fig. 4.7 Schematic phase diagram of a system exhibiting crossover between “ordinary” critical
phenomena along the line Tc(p), p < pm and the special point p = pm , Tm = Tc(pm), which may
be a multicritical point, for instance. Considering the approach to the critical line along an axis
parallel to the t-axis, one will observe critical behavior associated with the special point, as long
as one stays above the dash-dotted curve describing the centre of the crossover region. Only in
between this dash-dotted line and the critical line (solid curve) the correct asymptotic behavior for
p < pm can be seen. (From [4.97])
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All such cases can be schematically described, as shown in Fig. 4.7: varying
a parameter p the critical line Tc(p) in the (T, p) plane reaches a special point
Tc(p = pm) = Tm characterized by a unique critical behavior, which is distinct from
the behavior along Tc(p < pm). For all p < pm , the same type of critical behavior
occurs but the region where it actually can be observed shrinks to zero smoothly
as p → pm . Introducing scaling variables g [tangential to Tc(p) in the point Tm ,
pm] and t [normal to Tc(p) at p = pm], both the critical line and the centre of the
crossover region can be expressed in terms of the crossover exponent φ [4.95],

tc = g1/φ/yc, tcross = g1/φ/ycross, (4.27)

yc, ycross being constants. More precisely, the singular part of the free energy
F sing(T, H, p) becomes (H is the field conjugate to the order-parameter m)

F sing(T, H, p) = t2−αm F̃(Ht−(βm+γm ), g1/φ/t), (4.28)

αm , βm , γm being the standard critical exponents [4.96] in the point Tm , pm , and
F̃(x, y) is a scaling function. This function has at y = yc a singularity described
by critical exponents α, β, γ characteristic of the universality class at the critical
line, e.g.,

F̃(0, y) ∝ (y − yc)
2−α, (4.29)

while for y � ycross = g1/φ/tcross the y-dependence of F̃(x, y) can be neglected,
Fsing ∝ t2−αm for t � tcross.

When we wish to study a problem such as described above by finite-size scaling,
it is crucial to include the variable g1/φ/t in the finite-size scaling description, since it
matters whether for t → 0 first the crossover (Fig. 4.7) or first the finite-size rounding
(described by the variable L1/νm t , for instance) sets in (here we have assumed that
L scales with the correlation length ξm ∝ t−νm at the special point). Then, the gen-
eralization of the finite-size scaling assumption for the order-parameter distribution,
(2.79), is [4.97]

P(t, H,m, g, L) =Lβm/νm P̃(L1/νm t, L(βm+γm )/νm H,

Lβm/νmm, Lφ/νm g). (4.30)

For H = 0 and t = tc one finds that moments and cumulants still exhibit a nontrivial
behavior [4.97]

〈|m|k〉 = L−kβ/νg(kνm/φ)[(βm/νm )−(β/ν)]m̃k(L
φ/νm g), (4.31)

UL = 1 − 〈m4〉/[3〈m2〉2] = Ũ (Lφ/νm g). (4.32)

Only if L exceeds by far a crossover length ξcross ∝ g−νm/φ , L � ξcross, do we see the
simple finite-size scaling behavior, with Ũ (∞) = U � being the “cumulant crossing
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Fig. 4.8 a Ratio QL (Kc) ≡ 〈m2〉2L/〈m4〉L for the two-dimensional Ising model where every spin
interacts with all the z = 436 neighbors inside a maximum range of interaction Rm = √

140 lattice
spacings plotted at the critical coupling Kc = J/kBTc = 0.0023464 versus the system size (discrete
points). For large L , QL (Kc) approaches the Ising limit QI = 0.856216 [4.135], while for decreas-
ing L , QL (Kc) approaches the mean-field limit QMF = 8π2/[Γ (1/4)]4 ≈ 0.456947 [4.136], until
the system size becomes smaller than the range Rm, and other finite-size effects come into play.
To illustrate that the system is indeed mean-field like for these system sizes, Q is also plot-
ted for finite systems in which all spins interact equally strong (dashed curve). The points for
R2
m = 140 indeed approach this curve for small L . b Critical amplitude of the magnetization

at Kc(R)〈|m|〉Kc = do(R)L−1/8, plotted versus R2 on a log–log plot, where R2 = ∑
j �=i |ri −

r j |2/z with |ri − r j | ≤ Rm. Dotted line shows the slope predicted in (4.37). (From [4.100])

point” discussed in Sect. 2.3, and the moments are simple power laws, 〈|m|k〉 ∝
L−kβ/ν .

The above treatment is only valid if both sets of exponents (αm , βm , γm , νm) and
(α, β, γ , ν) satisfy hyperscaling relations [4.96], however,

d = (2 − αm)/νm = (2βm + γm)/νm = (2 − α)/ν = (2β + γ )/ν. (4.33)
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The important case where for d = 2 or d = 3 dimensions crossover to Landau-
like mean-field behavior occurs, needs separate discussion, as can be anticipated
from Sect. 2.3.6. When the range of interaction R tends to infinity, we may choose
g = 1/Rd , since then the variation of Tc with g near g = 0 is linear (apart from
possible logarithmic corrections [4.100]), compatible with Fig. 4.7. As discussed in
Sect. 2.3.6, for hypercubic geometry a simple extension of finite-size scaling is possi-
ble if the correlation length (ξm ∝ t−νm = t−1/2) is replaced by the “thermodynamic
length” [2.76] lT ∝ t−(γm+2βm )/d = t−2/d , cf. (2.92). Now (4.30)–(4.32) are replaced
by (2βm = γm = 1) [4.97].

P(t, H,m, R−d , L) = Ld/4 P̃(Ld/2t, L3d/4H, Ld/4m,

L(4−d)d/4R−d), (4.34)

〈|m|k〉 = L−dk/4m̃k(L
(4−d)d/4R−d), (4.35)

UL = Ũ (L(4−d)d/4R−d). (4.36)

Here the crossover exponent φ = (4 − d)/2 was invoked [4.97] from the Ginzburg
criterion [4.133], but a more rigorous derivation using renormalization-group meth-
ods has recently been presented [4.100]. Equation (4.34) shows that L now has to be
comparedwith a crossover length lcross ∝ R4/(4−d) (= R2 in d = 2 dimensions). Note
also the singular R-dependence of the asymptotic critical amplitude at tc, namely

〈|m|〉 ∝ L−β/νR−(d−4β/ν)/(4−d) = L−1/8R−3/4(d = 2). (4.37)

Figure 4.8 shows that these considerations indeed describe the actual behavior cor-
rectly,UL interpolates between the theoretically expected limits [4.135, 4.136]. Note
that for this study it was necessary to go to sizes L � lcross in order to be able to find
the critical couplings Kc(R) reliably: Thus lattice sizes up to 800 × 800 had to be
used [4.100]which for these long-range interactionmodelswas possible only through
the availability of an efficient cluster algorithm [4.50]. Thus, this study [4.100] is
a good example to demonstrate that both sophisticated new algorithms [4.50] and
refinements in the finite-size scaling analysis [4.99, 4.100] are crucial for making
progress. Similarly, combination of a new cluster algorithm [4.137] for the Blume–
Emery–Griffiths model [4.138] with finite-size scaling promises to be useful for
studying first-order transitions.



Chapter 5
Quantum Monte Carlo Simulations:
An Introduction

5.1 Quantum Statistical Mechanics Versus Classical
Statistical Mechanics

To be specific, let us consider for the moment the problem of N atoms in a volume V
at temperature T , and we wish to calculate the average of some observable A which
in quantummechanics is described by an operator Â. Then the answer to this problem
given by quantum statistical mechanics is

〈Â〉 = Z−1Tr exp
(
−Ĥ/kBT

)
Â = Z−1

∑
n

〈n| exp
(
−Ĥ/kBT

)
Â|n〉, (5.1)

where Ĥ is theHamiltonian of the system, and the trace iswritten here symbolically as
the sumover a discrete set of states {|n〉}whichweassumeorthonormal (〈n|m〉 = δnm)

and complete (
∑

n |n〉〈n| = 1̂ where 1̂ is the identity operator). Correspondingly, the
partition function Z is

Z = Tr exp
(
−Ĥ/kBT

)
=
∑
n

〈n| exp
(
−Ĥ/kBT

)
|n〉. (5.2)

The Hamiltonian Ĥ can be written, assuming a situation where relativistic effects as
well as explicit consideration of the spins of the particles can be neglected, and so
the simple description in terms of the Schrödinger equation applies,

Ĥ =
N∑
j=1

p̂2j
2m

+
∑
i<j

V̂
(
r̂i − r̂j

) =
N∑
j=1

Êkin
j +

∑
i<j

V̂ij, (5.3)

where p̂i is themomentum operator of the ith atom (all atoms are assumed to have the
mass m, and r̂i is the position operator, and we have assumed pairwise interactions
between the particles described by the potential V ).
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Now the basic reason why quantum statistical mechanics differs for this problem
from classical statistical mechanics, as was assumed in the first chapter of this book,
is that momentum and position operators of a particle do not commute,

[
r̂j, p̂j

] = i�, (5.4)

and hence also the commutator of kinetic and potential energy of a particle is non-

vanishing,
[
Êkin
j , V̂ij

]
�= 0. As a corollary of this statement, it can be easily seen – and

this is worked out in most standard textbooks on statistical mechanics – that neglect
of (5.4) for the evaluation of averages reduces the problem to classical statistical
mechanics. Indeed, one can then write, using for |n〉 eigenstates of the position
operators x̂i so

∑
n becomes

∫
dx1
∫
dx2 · · · ∫ dxN ,

Z =
∫

dx1 · · ·
∫

dxN (5.5)

× 〈x1 . . . xN | exp
⎛
⎝−

N∑
j=1

(
Êkin
j /kBT

)⎞⎠ exp
(
−V̂ /kBT

)
|x1 . . . xN 〉 ,

where we have used the result

eÂ+B̂ = eÂeB̂ (5.6)

for operators Â, B̂ that commute with each other – which is true, of course, only in
the limit � → 0, which is precisely the limit in which quantum mechanics reduces
to classical mechanics. If (5.5) were true, one could furthermore use

exp

⎛
⎝−

N∑
j=1

Êkin
j /kBT

⎞
⎠ =

N∏
j=1

exp
(
−Êkin

j /kBT
)

=
N∏
j=1

exp
(
−p̂2j /2mkBT

)
,

and introducing then suitably complete sets in momentum representation
∫
dpj|pj〉

〈pj| = 1̂ the kinetic energy terms can simply be evaluated and in the end cancel out
from the average in (5.1) if we consider a quantity that depends on the positions of the
particles only, since the same expression results from the kinetic energy contributions
both in the numerator and in the denominator of (5.1).

As we have emphasized above, details of this reasoning can be found in standard
text books on statistical mechanics, and there is no need to dwell on it here. But let us
recall what are the physical consequences when we indeed ignore (5.4) and evaluate
all averages according to classical rather than quantum statistical mechanics. First of
all, wemiss spectacular effects which result from the indistinguishability of quantum
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Fig. 5.1 Qualitative sketch of the specific heat Cv (upper left part), the lattice constant a (lower
left part) and an elastic constant C�m (right part) plotted versus temperature T . The corresponding
behavior given by classical statisticalmechanics are the broken straight lines. Significant differences
between classical and quantum statistical mechanics occur for temperatures T below the Debye
temperature Θ

particles and the resulting possibility of quantum-mechanical exchange, such as
superfluidity and Bose condensation (remember that here we talk about neutral
atoms, their electrons being bound to the nuclei – metals with quasi-free electrons
and resulting phenomena such as superconductivity and the problem of Anderson
localization etc., will not be considered here). But even in cases when we consider
relatively heavy atoms (e.g., considering noble gases we exclude helium but wish to
deal with neon, argon, xenon), where at low temperatures the fluid–solid transition
precludes the occurrence of a suprafluid phase, classical statistical mechanics at
low temperatures is severely in error. “Low temperature” means here temperatures
comparable to or lower than theDebye temperatureΘ , as a treatment of the statistical
mechanics of the crystal in terms of phonons shows. Some consequences of quantum
mechanics on the low-temperature properties of crystals are sketched qualitatively
in Fig. 5.1: while the specific heat per atom of a (harmonic) solid would simply
follow the Dulong–Petit law CV = 3kB (in d = 3 dimensions), it actually vanishes
for T → 0 as required by the third law of thermodynamics, and follows the Debye
law CV ∝ T 3 (in d = 3 dimensions) for T � Θ; the lattice parameter according to
classical statistical mechanics at low T varies linearly with T , which would mean the
thermal expansion coefficient would become constant, while in reality the thermal
expansion coefficient also vanishes for T → 0, and the same holds for temperature
derivatives of elastic constants.

Is there a need at all to study such low-temperature properties with simulations?
Isn’t it good enough to work out the statistical mechanics based on the lattice dy-
namical phonon treatment? At this point, it must be emphasized that the simple
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Fig. 5.2 Radii of “ring
polymers” representing
quantum-mechanically
treated silicon and oxygen
atoms in two crystalline
structures of SiO2,
β-cristobalite and β-quartz,
plotted as a function of
temperature, using a Trotter
number P = 30. For
comparison, the thermal de
Broglie wavelengths for free
oxygen and silicon atoms are
also shown. (From [5.1])
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harmonic approximation for crystals yields the Debye law but it does not yield
any temperature dependence of the lattice parameters and the elastic constants at all.
In order to account for these temperature dependencies, one has to use at least the
self-consistent quasi-harmonic theory. The latter relies on the fact that at nonzero
temperature in the NVT ensemble it is not the internal energy minimumwhich yields
the thermal equilibriumbut the free energy is aminimum, and at nonzero temperature
in a crystal internal energy E and free energy F differ by the entropic contribution
(F = E − TS) due to the disorder caused by the displacements of the atoms associ-
ated with the phonon vibrations. However, we emphasize that this quasi-harmonic
theory is not exact due to the neglect of anharmonic terms.While, according to classi-
cal statistical mechanics, the harmonic approximation does get exact as T → 0, this
is not true if quantum effects are taken into account, due to zero-temperature motions
the anharmonicity of the potential always plays some role. These zero-temperature
motions are a direct consequence of (5.4) by the resulting Heisenberg uncertainty
principle: a particle in a gas would be “spread out” over a linear dimension given
by the thermal de Broglie wavelength,

λT = h/
√
2πmkBT , (5.7)

the delocalization of particles around the lattice sites of a crystal (in the potential
from their neighbors) may be smaller (see Fig. 5.2 and [5.1]), but it also increases at
low temperatures proportional to T−1/2, as the thermal de Broglie wavelength does
(5.7). On the other hand, Fig. 5.2 demonstrates that for atoms such as Si or O the
delocalization of atoms due to zero-point motion at the temperatures of interest is
only of the order of 0.1Åor even smaller, i.e.,much less than all interatomic spacings:
therefore the neglect of quantum statistics and its consequences (exchange due to
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direct overlap of wave functions of particles at neighboring sites) is not a problem
in practice.

The precise estimation of lattice parameters, elastic constants and other properties
of crystals is of interest inmaterials science [5.2]. As an example, Fig. 5.3 [5.3] shows
the lattice parameter of orthorhombic polyethylene versus temperature, and the fluc-
tuation of the bond angle between three successive carbon atoms. One sees that this
lattice parameter does show a behavior as anticipated qualitatively in Fig. 5.1, but
even at room temperature the classical and the quantum-mechanical calculations do
not yet coincide (note that polyethylenemelts at aboutTm = 413K).Quantum effects
are particularly strong in solid polymers, since H and C are such light atoms, and al-
though the bond-angle potential along the C − C chain is rather stiff, there does occur
an appreciable zero-point fluctuation in the bond angle. These results [5.3], demon-
strating the importance of quantumeffects in ordinary polymers such as polyethylene,
have come somewhat as a surprise, since polyethylene melts already at Tm = 413K,
and usually one expects quantum effects to be strong only far below the melting
temperature. However, in the case of CnH2n+2 one must take into account the par-
ticular anisotropy of the crystal, the covalent forces along the backbone of the chain
molecules are very much stronger than the weak van der Waals-type forces between
neighboring chain molecules, and the latter forces are only responsible for melting.

Of course, manymore problems of the type shown in Figs. 5.1, 5.2 and 5.3 exist in
the physics of condensed matter. Particularly interesting are again phase-transition
phenomena, and indeed we encounter many transitions in solids from one crys-
tal structure to another driven either by varying the temperature or by varying the
pressure. At such structural phase transitions, the local potential experienced by
atoms sometimes is of the double-well type: this allows for quantum phenomena
which have no classical counterpart at all, such as tunnelling. We also emphasize
that interesting quantum effects in condensed-matter physics not only arise from the
non-commutativity of the position and momentum operators (5.4), but similar con-
siderations can be made for operators associated with other physical observables as
well, e.g., (orbital) angularmomentum and spin. Consider the problemofmonolayers
of adsorbed molecules such as N2 on graphite [5.4]: In the

√
3 ×√

3 commensu-
rate superstructure, one may ignore both the translational degrees of freedom and
the out-of-plane rotation, and the only degree of freedom that one must consider is
the angle ϕi describing the orientation of molecule i in the xy-plane parallel to the
substrate. Then the Hamiltonian is (I is the moment of inertia of the molecules, L̂jz
is the operator associated the z-component of the angular momentum of molecule j
and V̂ the intermolecular potential)

Ĥ =
N∑
j=1

L̂2jz
2I

+
∑
i<j

V̂
(
ϕ̂i, ϕ̂j

)
. (5.8)

For this problem the commutation relation analogous to (5.4) reads

[
L̂jz, ϕ̂k

]
= −i�δjk , (5.9)
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Fig. 5.3 a Temperature dependence of the lattice constant a for orthorhombic polyethylene
(CnH2n+2). Results of a path-integral Monte Carlo calculation are compared with the values for
a classical system and from experiments. After Martonak et al. [5.3]. b Temperature dependence
of the average fluctuation 〈(δΦCCC)2〉1/2 of the C − C − C bond angle in polyethylene, according
to the classical Monte Carlo simulation (full dots), yielding 〈(δΦCCC)2〉1/2 ∝ T 1/2 at low T , and
according to path integral Monte Carlo simulations (open symbols). Two choices of chain length n
are used, n = 12 and n = 24, respectively. (After [5.3])
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and the resulting zero-point vibrations of the angles ϕ̂k cause an appreciable reduction
of the orientational order parameter in comparison with its classical value at low
temperature [5.5]. Finally, considering the classical Heisenberg model of Chap. 1
again,

H = −J
∑
i<j

Ŝi · Ŝj − μBH
N∑
i=1

Ŝz
j , (5.10)

but now rather than unit vectors the Ŝi are spin operators, satisfying the commutation
relation [

Ŝα
i , Ŝβ

j

]
= i�εαβγ Ŝ

γ

j . (5.11)

Since the total magnetization M̂ = μB
∑N

i=1 Ŝ
z
i commutes with the Hamiltonian,

quantum effects do not lead to a reduction of themagnetization relative to its classical
ground state value. But, as spin wave theory shows, the temperature dependence of
internal energy and magnetization are very different in the quantum case from the
classical case,

E(T ) = 〈Ĥ〉 = E0 + const T 5/2, quantum case, (5.12)

M0 − M (T ) ∝ T 3/2, quantum case, (5.13)

while
E(T ) − E0 ∝ T , M0 − M (T ) ∝ T , classical case. (5.14)

Again one sees that in the classical case a nonzero specific heat results for T → 0,
analogous to the Dulong–Petit result for crystals. And just as the phonon theory
of crystals is difficult if one wishes to include anharmonic terms, such terms exist
for spin waves (magnons) too and again cannot be accounted for completely by
exact analytical methods. Quantum Monte Carlo methods, however, can be applied
without such restrictions.

5.2 The Path Integral Quantum Monte Carlo Method

The basic idea of the path integral representation of the partition function [5.6] can
already be explained for the simple problem of a single quantum particle in one
dimension x in an external potential V̂ (x), where (5.3) and (5.2) reduce to

Ĥ = Êkin + V̂ = − �
2

2m

d2

dx2
+ V̂ (x), (5.15)

Z =
∫

dx〈x| exp(−Ĥ/kBT )|x〉 =
∫

dx〈x| exp(−(Êkin + V̂ )/kBT )|x〉. (5.16)
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The path integral representation of (5.16) can be most easily derived if one recalls
the Trotter–Suzuki formula [5.7, 5.8]

exp(Â + B̂) = lim
P→∞[exp(Â/P) exp(B̂/P)]P, (5.17)

which holds for two non-commuting operators Â, B̂, which satisfy another operator
identity

exp(Â + B̂) = exp(Â) exp(B̂) exp

(
−1

2
[Â, B̂]

)
, (5.18)

when the commutator of the operators Â, B̂ is a complex number c, i.e., [Â, B̂] = c.
Equation (5.18) can be easily derived from systematic Taylor expansions of the
exponential function and should be familiar to the reader from elementary text books
on quantum mechanics. If we now apply (5.18) to the operator exp(Â′ + B̂′) where
Â′ = Â/P, B̂′ = B̂/P, we recognize that the term [Â′, B̂′] that appears on the right-
hand side in the last exponential is of order P−2,

[Â′, B̂′] = c/P2, (5.19)

and thus it is plausible that in the limit P → ∞ this correction can be neglected, and
hence (5.17) results. In our case of the particle in the external potential we hence use

exp
[
−(Êkin + V̂ )/kBT

]

= lim
P→∞

[
exp(−Êkin/kBTP) exp

(
−V̂ /kBTP

)]P
. (5.20)

Using (5.20), the partition function (5.16) becomes

Z = lim
P→∞

∫
dx1

∫
dx2 · · ·

×
∫

dxP〈x1| exp(−Ekin/kBTP) exp(−V̂ /kBTP)|x2〉
× 〈x2| exp(−Êkin/kBTP) exp(−V̂ /kBTP)|x3〉〈x3| · · · |xP〉
× 〈xP| exp(−Êkin/kBTP) exp(−V̂ /kBTP)|x1〉. (5.21)

The matrix elements appearing in (5.21) can be worked out, this is just an exercise
in elementary quantum mechanics, and the result is

〈x| exp(−Êkin/kBTP) exp(−V̂ /kBTP)|x′〉

=
(
mkBTP

2π�2

)1/2

exp

[
−mkBTP

2�2
(x − x′)2

]
exp

[
−V (x) + V (x′)

2kBTP

]
. (5.22)
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Thus the partition function becomes

Z = lim
P→∞ ZP,

ZP =
(
mkBTP

2π�2

)P/2 ∫
dx1

∫
dx2 · · ·

×
∫

dxp exp

{
− 1

kBT

[
κ

2

P∑
s=1

(xs − xs+1)
2 + 1

P

P∑
s=1

V (xs)

]}
, (5.23)

where the boundary condition xP+1 = x1 is implied, and as an abbreviation an ef-
fective spring constant κ was introduced,

κ = mP(kBT/�)2. (5.24)

From (5.23) one immediately recognizes that ZP can be considered as the partition
function of a problem in classical statistical mechanics with P degrees of freedom,
namely a harmonic chain in an external potential V (xs)/P. In this way we have
a problem of quantum statistical mechanics (5.16) to which standard Monte Carlo
methods, as described in the first chapter of this book, are readily applied. Of course,
in practice we will work with several choices of large but finite P, in order to carry
out the extrapolation P → ∞ numerically.

This approach can be generalized straightforwardly toN particles interacting with
each other according to the potential V̂ (r̂i − r̂j) in three dimensions (5.1)–(5.3) if we
disregard the indistinguishability and statistics of the particles (later on this restriction
will be removed of course). Using steps analogous to those which lead from (5.21)
to (5.23), use of (5.20) now yields for (5.3) the result

ZP =
(
mkBTP

2π�2

)3NP/2

×
∫

dr(1)1 · · ·
∫

dr(P)
1

∫
dr(1)2 · · · dr(P)

2 · · ·
∫

dr(1)N · · ·
∫

dr(P)
N

× exp

{
− 1

kBT

[
κ

2

N∑
i=1

P∑
s=1

(
r(s)i − r(s+1)

i

)2

+ 1

P

∑
i<j

P∑
s=1

V
(
|r(s)i − r(s)j |

)
⎤
⎦
⎫
⎬
⎭ . (5.25)

Equation (5.25) can be interpreted as a melt of cyclic chains (“ring polymers”)
with harmonic springs connecting neighboring beads along the chains, but the in-
teractions among the beads are rather uncommon: while in a physical melt of ring
polymers in principle every bead can interact with every other bead in the system,
here only beads with the same Trotter index s are interacting (the coordinate along
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Fig. 5.4 Schematic representation of two interacting quantum particles i, j in two dimensions:
each particle (i) is represented by a “ring polymer” composed of P = 10 effective monomers at
positions r(s)i , with s = 1, 2, . . . ,P. Harmonic springs (of strength κ) only connect “monomers”
of the same “polymer” while interatomic forces join different monomers with the same Trotter
index s, Indicated by the thin straight lines. In the absence of such interactions, the size of such
a ring polymer would be of the order of the thermal de Broglie wavelength λT = h/

√
2πmkBT ,

where h is Planck’s constant

the Trotter index s plays the role of imaginary time τ = sΔτ [5.6] and hence there is
only an interaction between particles that belong to the same “timeslice” Δτ ). This
situation is sketched in Fig. 5.4 for two interacting particles.

By (5.25), the problemof evaluating the partition function, (5.2), within the frame-
work of quantum statistical mechanics has indeed been reduced to an equivalent
problem in classical statistical mechanics, although one must be careful since the
effective Hamiltonian Hp of the N × P particles in ZP

ZP =
(
mkBTP

2π�2

)3NP/2 ∫
dr(1)1 · · ·

∫
dr(P)

N exp

{
− 1

kBT
HP

}
(5.26)

depends explicitly on temperature (via the spring constant κ , see (5.24)) [5.6, 5.9–
5.12]. Thus Monte Carlo simulations can be applied rather straightforwardly to
estimate corresponding averages [5.9–5.12]

〈A〉P = Z−1
P

∫
dr(1)1 · · ·

∫
dr(P)

N exp

{
− 1

kBT
HP

}
A. (5.27)

Let us now briefly discuss the physical interpretation of these results. If the po-
tential in (5.25) could be neglected completely, we could infer from the equipartition
theorem of classical statistical mechanics that the energy carried by each spring is
(in d dimensions)

κ

2

〈(
r(s)i − r(s+1)

i

)2〉 = d

2
kBT . (5.28)
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Using (5.24) and (5.28), we conclude that the average mean square distance be-
tween neighboring particles in a ring polymer is

�2 ≡
〈(
r(s)i − r(s+1)

i

)2〉 = dkBT/κ = �
2d/(mkBTP). (5.29)

Of course, this result does not depend on s, all particles in a ring polymer are
equivalent. Now the gyration radius of a ring polymer containing P monomers for
large P scales as 〈

R2
g

〉 = �2P/12 = (d/12)(�2/(mkBT )). (5.30)

As could have been expected, this is of the same order as the square of the ther-
mal de Broglie wavelength, λ2

T = h2/(2πmkBT ), and the “Trotter number” P has
cancelled out from this result. As is well known from the quantum statistical me-
chanics of an ideal, noninteracting gas, integrating out the momenta the Heisenberg
uncertainty principle (Δp)2(Δx)2 ≈ h2 requires that the delocalization of a particle
in space is 〈(Δx)2〉 ≈ h2/〈(Δp)2〉 ≈ �

2/(mkBT ), omitting prefactors of order unity
here. Equation (5.30) thus again illustrates that quantum effects become more im-
portant the lower the temperature and the lighter the particle (i.e., the smaller the
mass m). Of course, (5.29) no longer is accurate when interactions among the par-
ticles occur, but qualitatively it still predicts correctly the order of magnitude of the
quantum mechanical delocalization due to zero-point motions at low temperatures;
Fig. 5.2 gives an explicit example for the case of SiO2 [5.1].

Now it is clear that in order to take into account quantum effects correctly one
has to perform the extrapolation towards P → ∞ (see (5.23)). From (5.17) to (5.20)
one can infer that the quantum corrections of physical observables scale as P−2 (see
(5.19)). This result implies that one should compute observables for several values
of P and try an extrapolation of the results as a function of P−2. Of course, in general
it is a nontrivial question to judge how large P must be chosen in order to reach the
asymptotic scaling limit. From (5.5) it is clear that the distance between effective
monomers in the ring polymer scales as � ∝ �/

√
mkBTP. We need to keep this

distance fixed at a value that is small in comparison to the length scale on which the
potential acting on the particles changes appreciably. In order to keep � fixed it thus
obviously is necessary to keep the productmkBTP fixed – the lower the temperature,
the larger P must be chosen. In practice, there does not exist a simple recipe that
tells us how large P has to be in a specific case; rather one has to find the appropriate
range of P values by trial and error. Figure 5.5 shows that in favorable cases rather
small values of P suffice to reach the asymptotic limit [5.13] where the scaling of
data linearly with P−2 actually is observed. This figure also demonstrates that PIMC
is able to identify typical quantum-mechanical effects such as “isotope effects”: the
two isotopes 20Ne and 22Ne of the Lennard–Jones system differ only by their mass
– in classical statistical mechanics there would be no difference in static properties
whatsoever. However, Fig. 5.5 shows there is a clear distinction between the lattice
constants of the two isotopes, and the difference observed in the simulation in fact is
rather close to the value found in experiments [5.14]. However, other examples exist
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Fig. 5.5 Trotter scaling plot
for the lattice parameter a of
solid neon. The upper curve
corresponds to 20Ne at
T = 16K, the lower curve to
22Ne at T = 16K.
(From [5.13])
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when even Trotter numbers as large as P = 100 are not large enough to ensure that
the asymptotic limit of the P−2 scaling has been reached.

As mentioned above, the treatment so far has completely neglected the effects of
quantum statistics. This approximation is ok for crystals, ensuring furthermore that
the typical inter-particle distance is large in comparison with the linear dimension
of the ring polymers. As expected, this approximation breaks down when the linear

dimension of the ring polymer describing a particle
(√

〈R2
g〉
)
becomes comparable

to inter-particle distances: then the wave functions show appreciable overlap and the
effects of quantum statistics need to be properly taken into account. This problem
needs to be handled when one wishes to treat quantum crystals such as solid 3He or
solid 4He, as well as the corresponding quantum fluids [5.11, 5.12]. Here we shall
only discuss Bose systems (such as 4He). Only totally symmetric eigenfunctions
contribute to the density matrix, and hence we introduce a permutation operator P̂
such that P̂R is a permutation of particle labels if we use the shortened notation R ≡
(r1, r2, . . . , rN ) for the set of particle coordinates. Thenwehave for any eigenfunction
Φα(R̂)

P̂Φα(R) = 1

N !
∑
P

Φ(P̂R), (5.31)

and the partition function for a Bose system therefore takes the form

ZBose =
(
mkBTP

2π�2

)dNP/2 1

N !
∫

dr(1)1 · · ·
∫

dr(P)
N exp(−HP/kBT ). (5.32)

Now the boundary condition is not r(P+1)
i = r̂(1)

i as it was in (5.25) and (5.26),
but one has to obey only the condition that

P̂R(P+1) = R(1). (5.33)
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This means that paths are allowed to close on any permutation of their starting po-
sitions, and contributions from all N ! closures are summed over in the partition
function. At high temperatures the contribution from the identity permutation will
dominate, while at zero temperature all permutations contribute equally. In the clas-
sical isomorphic polymer system, this means that “cross-links” can form between
chains and open up again; of course, this has nothing to do with the chemical kinetics
of cross-linking and polymerization in real polymers. Thus, a two-atom system with
P effective monomers per ring polymer can be in two possible permutation states:
either two separate ring polymers, each with P springs (this is the situation described
in Fig. 5.4) or one larger ring polymer with 2P springs.

It is illuminating to ask what superfluidity means in this formalism [5.15], since
this actually occurs in 4He: A macroscopic polymer is formed which involves of the
order of N atoms and stretches over the entire system. From Fig. 5.4, it is clear that
this “cross-linking” among ring polymers can set in only when the linear dimension
of a ring polymer becomes of the same order as the “ring polymer spacing”; from this
argument one can get a rough estimate of the superfluid transition temperature, by
putting the thermal de Broglie wavelength λT = h/

√
2πmkBT equal to the classical

inter-particle spacing, �−1/d in d dimensions, � being the density. The “degeneracy
temperature” TD found from λT = �−1/d is TD = �2/dh2/(2πkBm), and this sets the
temperature scale on which important quantum effects occur.

In practice, use of (5.25) and (5.30) would not work for the study of superfluidity
in 4He: although the formalism in principle is exact, too large values of P would
be required in order to obtain reasonable results. In order to make progress one
must not use the so-called “primitive action” defined in (5.25) but must use the
so-called “improved actions” for HP . We refer the reader to the original literature
for details [5.11].

5.3 Quantum Monte Carlo for Lattice Models

One follows again the strategy to decompose the Hamiltonian of the considered
model H into two parts, Ĥ = Ĥ1 + Ĥ2, that can be diagonalized separately so that
the use of the Trotter–Suzuki formula [5.7, 5.8] is helpful, see (5.17),

exp[−(Ĥ1 + Ĥ2)/kBT ] = lim
P→∞[exp(−Ĥ1/kBTP) exp(−Ĥ2/kBTP)]P. (5.34)

Unfortunately, there is no general recipe how this splitting of the Hamiltonian
into parts is best done in practice – what is best depends very much on the model
that is considered. Therefore many different variants of this approach can be found
in the literature [5.16–5.18]; we hence cannot attempt to explain all these various
methods, but only attempt to convey the spirit of the general approach here. At this
point, we also mention that it is possible to consider higher-order decompositions of
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Ĥ, where application of the Trotter formula with a finite Trotter number P does not
imply a scaling of the error as P−2 but according to a higher power of 1/P [5.19].

As a first example, we treat the one-dimensional Ising model in a transverse field
of strength H⊥, taking [5.20]

Ĥ1 = −J
N∑
i=1

σ̂ z
i σ̂

z
i+1, Ĥ2 = −H⊥

N∑
i=1

σ̂ x
i , (5.35)

where σ̂ α
i (α = x, y, z) denote the Pauli spin matrices at lattice site i. Periodic bound-

ary conditions σ̂ α
N+1 = σ̂ α

1 are assumed as usual. As a state representation let us use
eigenstates of σ̂z and label them by Ising spin variables, s = ±1, i.e.,

σ̂ z|s〉 = s|s〉. (5.36)

Of course, Ĥ1 is diagonal in this representation, while Ĥ2 is not. Now the Pth
approximant ZP to the partition function can be written as

ZP = Tr
{
exp(−Ĥ1/kBTP) exp(−Ĥ2/kBTP)

}P

=
∑
{
S(s)
i

}

P∏
s=1

N∏
i=1

exp

[
J

kBTP
S(s)
i S(s)

i+1

] 〈
S(s)
i

∣∣ exp
(
H⊥σ̂ x

i

kBTP

) ∣∣S(s+1)
i

〉
. (5.37)

In this trace we have to take periodic boundary conditions in the imaginary time
direction as well, S(P+1)

i = S(1)
i . Using the results for the Pauli spin operators, one

easily obtains the following result for the matrix element in (5.37)

〈s| exp(aσ̂ x)|s′〉 =
(
1

2
sinh 2a

)1/2

exp

(
1

2
log coth a

)
ss′, (5.38)

where a is an abbreviation for H⊥/(kBTP). Using (5.38) in ZP one obtains an ex-
pression that is formally equivalent to the partition function of an anisotropic two-
dimensional Ising model in the absence of any fields, namely

ZP =
[
1

2
sinh(2H⊥/kBTP)

]PN/2

×
∑
{
S(k)
i

}
exp

[
P∑

k=1

N∑
i=1

(
KPS

(k)
i S(k+1)

i + J

kBTP
S(k)
i S(k)

i+1

)]
, (5.39)

with a coupling constant KP in the “Trotter direction” that depends both on the
temperature T and the linear dimension P in this direction,
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KP = 1

2
log{coth(H⊥/kBTP)}. (5.40)

Equation (5.40) is analogous to the coupling with the spring constant κ in (5.24).
Again it turns out necessary to choose P such that one works in the limit of large
KP , i.e., one must have kBTP/H⊥ � 1, the lower the temperature the larger the
Trotter dimension P must be. As in the off-lattice case, the original interaction (here
the exchange interaction J ), acts only between spins with the same Trotter index
(Denoted as k here).

The partition function of the two-dimensional Ising square lattice can be solved
exactly also for anisotropic exchange couplings, and hence there is no need to deal
with this problem by Monte Carlo methods. However, the same method as shown
in (5.35)–(5.40) straightforwardly applies to higher-dimensional Ising models with
transverse fields as well – always the quantum effects lead to the occurrence of this
extra dimension, and the linear dimension P in this direction needs to be extrapolated
to infinity in order to render this method as an exact one. In practice, the recipe is
to carry out a series of simulations for finite values of P, and extrapolate physical
properties as functions of P−2 towards P → ∞.

As a second and physicallymore interesting example, where the Trotter formalism
is applied to a spin problem on a lattice, we have the anisotropic Heisenberg chain
with spin quantum number s = 1/2. The Hamiltonian of this model is given by
(periodic boundary conditions again being implied)

H =
N∑
i=1

(JxŜ
x
i Ŝ

x
i+1 + JyŜ

y
i Ŝ

y
i+1 + JzŜ

z
i Ŝ

z
i+1). (5.41)

There have been several distinct ways in which the quantum Hamiltonian can be
split into parts such that the Trotter formula (5.17) can be applied in a useful way.
We describe here only the procedure first suggested by Suzuki and by Barma and
Shastry [5.21, 5.22],

Ĥ = Ĥ0 + ĤA + ĤB, (5.42)

where

Ĥ0 = −
N∑
i=1

JzŜ
z
i Ŝ

z
i+1, ĤA =

∑

i odd
Ĥi, ĤB =

∑
i even

Ĥi, (5.43)

where Ĥi is the local transverse part of the Hamiltonian,

Ĥi = −
(
JxŜ

x
i Ŝ

x
i+1 + JyŜ

y
i Ŝ

y
i+1

)
. (5.44)

We apply the Trotter formula to obtain the Pth approximant ZP of the partition
function in the following form,
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ZP = Tr
(
e−Ĥ0/2kBTPe−ĤA/kBTPe−Ĥ0/2kBTPe−ĤB/kBTP

)P
. (5.45)

As in the previous case, we use eigenstates of Ŝz and hence of the Hamiltonian
Ĥ0, the Ising-like part. We now insert into the above trace operation altogether 2P
complete sets of such states in such a way that there is just one complete set between
each term e−ĤA/kBTP , e−ĤB/kBTP .

ZP = Tr
{S(k)

i }
exp

{
− 1

2kBTP

2P∑
k=1

H(k)
0 − 1

kBT

∑
i∈A

2P∑
k=1

h(i, k)

− 1

kBT

∑
i∈B

2P∑
k=1

h(i, k)

}
, (5.46)

with

exp [−h(i, k)/kBT ] = 〈S(k)
i S(k)

i+1

∣∣ exp(−Hi/kBTP)
∣∣S(k,i)

i S(k)
i+1

〉
. (5.47)

Also the spins S(k)
i have values S(k)

i = ±1/2. Equation (5.46) can be interpreted
as the partition function of a lattice of size N × 2P with periodic boundary condi-
tions in both directions and a very anisotropic interaction: these are just the two-
spin couplings described by H(k)

0 = −∑N
i=1 JzS

(k)
i S(k)

i+1 in the real space direction,
and temperature-dependent four-spin couplings on alternating elementary plaque-
ttes, which couple neighboring sites in both real space and the Trotter direction. This
one can recognize from (5.47), which defines the four-spin couplings implicitly.

For more details on this problem defined by (5.41) and results obtained in numer-
ical studies of (5.46) by Monte Carlo methods we refer to the literature [5.20, 5.23].
Here we turn to a very brief discussion of other models that have been intensively
studied, that involve fermionic degrees of freedom explicitly. The simplest case is
spinless fermions in one dimension [5.20, 5.23], with the Hamiltonian

Ĥ = −t
N∑
i=1

(ĉ+
i ĉi+1 + ĉ+

i+1ĉi) + V
N∑
i=1

n̂in̂i+1. (5.48)

As is well known, the fermion operators ĉ+
i , ĉi create (or annihilate) a particle at

lattice site i, and satisfy the anticommutation relation

[ĉ+
i , ĉj]+ = ĉ+

i ĉj + ĉj ĉ
+
i = δij. (5.49)

The particle number operator
n̂i ≡ ĉ+

i ĉi (5.50)

has only the two eigenvalues ni = 0 or ni = 1,
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n̂i|1〉 = 1|1〉, n̂i|0〉 = 0|0〉 = o, (5.51)

expressing the Pauli principle that never can two fermions be in the same state. The
total number of particles in the system is then related to the operator

N̂ =
N∑
i=1

n̂i, (5.52)

and the particle density is defined as

�̂ = N̂ /N . (5.53)

In (5.48) one can choose the hopping energy t as unity, leaving V as the only
nontrivial energy scale in the model. Since ĉ+

i |ni〉 = |1〉 if ni = 0, ĉi+1|ni+1〉 = |0〉 if
ni+1 = 1, the term ĉ+

i ci+1 in (5.48) yields a non-vanishing contribution if a particle
is destroyed at site i + 1 and simultaneously a particle is created at site i, which
physically may be interpreted as a hopping process of the particle from site i + 1 to
site i.

It turns out that the presentmodel, (5.48), can be essentiallymapped to the previous
model, (5.41), by a clever transformation: this approach is one of the standard tricks to
deal with quantum problems, by which one tries to make the problemmore tractable!
Thus, one first defines spin-raising (σ̂+

� ) and spin-lowering (σ̂−
� ) operators in terms

of the Pauli matrices σ̂ α
� (α = x, y, z),

σ̂+
� = (σ̂ x

� + iσ̂ y
� )/2, σ̂−

� = (σ̂ x
� − iσ̂ y

� )/2. (5.54)

Now the fermion operators can be expressed in terms of the operators σ̂+
� , σ̂−

� ,
σ̂ z

� by the so-called Jordan–Wigner transformation,

ĉ+
� = σ̂+

� exp

⎡
⎣ iπ

2

�−1∑
p=1

(
1 + σ̂ z

p

)⎤⎦ , ĉ−
� = σ̂−

� exp

⎡
⎣− iπ

2

�−1∑
p=1

(
1 + σ̂ z

p

)⎤⎦ .

(5.55)

While this nonlocal transformation looks fairly complicated, the resulting Hamil-
tonian becomes rather simple, if we neglect boundary terms, which are unimportant
for N → ∞,

Ĥ = − t

2

N∑
i=1

(
σ̂ x
i σ x

i+1 + σ̂
y
i σ̂

y
i+1

)− V

2

N∑
i=1

(
σ̂ z
i σ̂

z
i+1 + 2σ̂ z

i + 1
)
. (5.56)

This problem can be solved by the method described for (5.41) in (5.42)–(5.51),
or a similar decomposition [5.20, 5.24]. Here we do not discuss further the method-
ological aspects of this problem, but rather show results [5.24] for the structure factor
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Fig. 5.6 a Points showing Monte Carlo data for the structure factor S(q) versus q, for the case of
N = 40 and 20 non-interacting electrons (t = 1, V = 0) at a low temperature, kBT = 1/4. Solid
line is the analytical solution, which can trivially be found for this non-interacting system. bMonte
Carlo results for the structure factor S(q) versus q, for the case ofN = 40 but 20 interacting electrons
(t = 1,V = 2, kBT = 1/4).Note the difference in scale between parts a and b. cMaximumstructure
factor for the half-filled case (〈�̂〉 = 1/2), S(qπ ), plotted versus the logarithm of the lattice size for
t = 1, V = 2, kBT = 1/4. (From [5.24])

ST (q) =
N∑
j=1

(〈n̂in̂i+j〉 − 〈n̂i〉〈n̂i+j〉
)
cos(jqa), (5.57)

where a is the lattice spacing and q the wave number (Fig. 5.6). One can see that for
such fermion models even in d = 1 dimensions nontrivial results are obtained. But
even in this case statistical errors at low temperatures become appreciable already for
moderately largeN (the largestN included in Fig. 5.6 isN = 100), and the finite-size
behavior needs to be carefully analyzed (note the logarithmic scaling with N ).
One of the most famous models for interacting electrons on a lattice is the single-

band Hubbard model [5.25]
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Ĥ = −t
∑
〈i,j〉

(ĉ+
j,σ ĉi,σ + ĉ+

i,σ ĉj,σ ) +U
∑
i

n̂i↓n̂i↑, (5.58)

where now ĉ+
i,σ (ĉi,σ ) denotes a creation (annihilation) operator for a fermion spin

σ at lattice site i, with σ =↑ or σ =↓ denoting the two orientations of the electron
spin. Comparing (5.58) with (5.48), we note that we have made two generalizations:
from one dimension to general dimension, but the hopping is still restricted to nearest
neighbor pairs 〈i, j〉; and the fermions are treated as spin 1

2 particles, as they should
be, rather than ignoring the spin, as done in (5.48). Electrons are negatively charged,
of course, and so in principle we should have a Coulomb interaction: as a crude ap-
proximation, all interactions are neglected apart from the on-site interaction between
two electrons with opposite spin on the same site in (5.48); for the case of “spinless
fermions”, at most one particle per site is possible, and hence the simplest choice
of interaction is a nearest-neighbor interaction. Although the model (5.58) is not
a realistic description of any physical system, it still captures some essential features
of the physics of strongly correlated electrons. Originally the Hubbard model was
studied intending applications to the metal–insulator transition, and to the problem
of itinerant magnetism in narrow bands in metallic crystals. Then it has become
a very popular starting point (in its two-dimensional version) to describe the elec-
trons in the Cu2O-planes of high-temperature superconducting materials. Although
it has been studied very intensively with a variety of methods, important aspects of
its properties are still incompletely understood, and thus the model (5.58) still is an
active area of research.

For higher-dimensional systems, the transformation of (5.55) does not help, and
thus a different approach for dealing with the fermion operators is needed. One
strategy is to integrate out the fermionic degrees of freedom by introducing auxiliary
bosonic fields. For this purpose one uses the identity

∫ +∞

−∞
exp(−aφ2 − bφ)dφ = √π/a exp(b2/4a), (5.59)

where a, b are real numbers, and a > 0 is required. Suppose nowwewish to calculate
the grand-canonical partition function Zgc with the Trotter–Suzuki formula,

Zgc = Tr exp

[
− 1

kBT

(
Ĥ − μN̂

)]
= lim

P→∞ZP
gc,

ZP
gc = Tr

{(
exp

[
− 1

kBTP

(
Êkin − μN̂

)]
exp

(
− 1

kBTP
V̂

))P
}

, (5.60)

μ being the chemical potential, and we have made use of the Trotter formula to
disentangle terms which are quadratic in the fermion operators (Êkin − μN̂ ) from
quartic terms (V̂ thus contains the terms Un̂i↑n̂i↓ = Uĉ+

i↑ĉi↑ĉ
+
i↓ĉi↓). Now one can

express exp(−V̂ /kBTP) as an exponent of a quadratic form, if one uses (5.59) as
follows (U > 0)
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exp

[
− U

kBTP

N∑
i=1

n̂i↑n̂i↓

]

∝
N∏
i=1

∫ +∞

−∞
dφi exp

[
−kBTPφ2

i

2U
− φi(n̂i↑ − n̂i↓) − U (n̂i↑ + n̂i↓)

2kBTP

]
. (5.61)

Symbolically, the Pth approximantZP
gc to the grand-canonical partition function can

be written as follows, involving a quadratic form of the fermion operators in the
exponential,

ZP
gc =

N∏
i=1

∫ +∞

−∞
dφiTr

{
exp

[
ĉ+
iσA

(1)
ij ĉjσ

]
· · · exp

[
ĉ+
iσA

(2P)
ij ĉjσ

]}
, (5.62)

where the A(k)
ij (which depend on the φi and σ , of course) are elements of N × N -

matrices A(k). However, for quadratic forms in the fermion operators as appear in
(5.62) the trace over the fermionic degrees of freedom can be carried out analytically,
to yield [5.18]

Tr
{
exp

[
ĉ+
i Â

(1)
ij ĉj

]
· · · exp

[
ĉ+
i Â

(P)
ij ĉj

]}
= det

{
1 + exp

(
A(1)
) · · · exp (A(P)

)}
.

(5.63)

As a result, the partition function becomes [5.18]

Z (P)
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∏
i,s
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dφ(s) exp
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⎢⎣−
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)
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× det

[
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(
−Ṽ
(
−φ
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i

))
exp(−K̃/kBTP)

· · · exp(−K̃/kBTP) exp
(
−Ṽ
(
−φ

(P)
i

)) ]
. (5.64)

Here K̃ is an abbreviation for K̃ = Ekin − (μ − V/2)N , the kinetic energy matrix
for a single-particle matrix on a lattice, and Ṽ (φ�) is a diagonal matrix depending
on the φ�j which we do not write out in detail here.
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By eliminating the fermionic degrees in favor of Gaussian fields φ
(s)
i (or in favor

of Ising spin variables, which is an even more useful alternative for the Hubbard
model [5.26]), one has managed to express the partition function entirely in terms
of real numbers, so it looks suitable for a Monte Carlo evaluation. However, in order
to be able to interpret the result in terms of an effective classical Hamiltonian, i.e.,

Z (P)
gc ∝

∏
i,s

∫
dφ(s)

i exp
[
−H(P)

eff

(
φ

(s)
i

)
/kBT

]
, (5.65)

it is mandatory that the integrand in (5.65) is always non-negative, and this is not the
case! This problem – which is quite typical for quantumMonte Carlo simulations of
fermionic systems – is called the “minus-sign problem” [5.27]. So when we want
to calculate an average of a quantity A(x) with a measure �(x),

〈A〉 =
∫

A(x)�(x)dx

/∫
�(x)dx, (5.66)

we can no longer interpret �(x) as probability density, if �(x) is not positive semi-
definite, and so the basis for Metropolis importance sampling is no longer valid.
Of course, this difficulty can be circumvented formally by the trick of using the
probability density �̃ = |ϕ(x)|/ ∫ |�(x)|dx and absorbing the sign of �(x) in the
quantity that one wishes to estimate,

〈A〉 =
∫
A(x)sign(�(x))̃�(x)dx∫
sign(�(x))̃�(x)dx

= 〈Aŝ〉
〈ŝ〉 , (5.67)

where ŝ is the sign operator. But it is unlikely that this importance sampling based
on |�(x)| will really sample the important regions of phase space when N gets large.
Indeed, for the Hubbard Hamiltonian one estimates that [5.18]

〈ŝ〉 ∝ exp(−γNU/kBT ), (5.68)

where γ is a constant of order unity. Thus it is clear that for low temperatures and
large N the denominator 〈ŝ〉 in (5.67) gets extremely small, and hence it becomes
impossible to sample 〈A〉 using (5.67) with meaningful accuracy.

While many schemes have been devised to alleviate this problem, a fully satisfac-
tory solution to this “minus sign problem” is unknown to the authors of this book
at the time of writing. In view of these difficulties, we have confined ourselves to
a rather sketchy description of the quantum Monte Carlo approach to fermions on
lattices, since this is still an active area of research. Also the treatment of quantum
spin models still is under development: in particular, substantial improvement has
been obtained by combining cluster algorithms with PIMC Monte Carlo methods
for quantum spin systems [5.28].
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5.4 Concluding Remarks

QuantumMonteCarlo simulation is a particularly richfield, andmany aspects are still
under development. In this chapter, we have emphasized the path integral quantum
Monte Carlo technique and even for this method only the flavor of the approach
could be given, and typical applications were sketched. There are also important
Monte Carlo methods addressing the problem of solving themany-body Schrödinger
equation, in order to find ground-state energy and associated wave functions [5.18].
We refer the interested reader to the literaturewhere he can find very concise accounts
of “variational Monte Carlo (VMC)”, “Green’s function Monte Carlo (GFMC)”,
“Projector Quantum Monte Carlo (PQMC)”, etc., [5.18]. Path integral simulations
of “rotors” (rotating rigid molecules) have been reviewed in [5.29].



Chapter 6
Monte Carlo Methods for the Sampling
of Free Energy Landscapes

6.1 Introduction and Overview

In this chapter, we return to classical statistical mechanics. In the canonical ensemble
averages of an observable A(�x), where �x stands symbolically for the “microstate”
coordinate in the configurational part of the phase space of the system, are given by
(cf. Sect. 2.1.1)

〈A(�x)〉T = 1

Z

∫
d�x exp [−H(�x)/kBT

]
A(�x). (6.1)

Here H(�x) is the Hamiltonian of the considered many-particle system, kB Boltz-
mann’s constant, T absolute temperature, and Z being the partition function, which
is related to the free energy F ,

Z =
∫

d�x exp[−H(�x)/kBT ], F = −kBT ln Z . (6.2)

By simple sampling Monte Carlo (Sects. 2.1.2–2.1.5), the integrals over the (very
high-dimensional!) space

∫
d�x…in (6.1), (6.2) are replaced by sums over a sample of

M randomly chosen points {�x1, �x2, . . . , �xM }, but we have seen that simple sampling
works only if the number N of the particles (or degrees of freedom, such as Ising or
Heisenberg spins, cf. Sect. 2.1.1) is extremely small. Therefore, we have introduced
the Importance SamplingMonte Carlo method (Sect. 2.1.6), where the points {�xν} no
longer are chosen completely at random, but preferentially from the important region
of configuration space. Namely, choosing a state �xν with a probability proportional
to the Boltzmann factor exp(−H(�xν)/kBT ), the average in (6.1) is simply replaced
by an arithmetic average over the M states generated, cf. (2.35):

〈A(�x〉T ≈ A(�x) = 1

M

M∑
i=1

A(�xi ). (6.3)
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In the previous chapters of this book, we have seen that the Importance Sam-
pling Monte Carlo method is very powerful; it allows a very large number of useful
applications. However, when we compare (6.1) and (6.3), we see that some impor-
tant information has been lost: (6.3) has as a normalizing denominator no longer
the partition function Z (6.2), but rather simply the total number M of generated
configurations. In fact, doing Importance Sampling Monte Carlo, the knowledge of
Z and hence F , as well as of the entropy S (remember F = E − T S, where the
internal energy E is accessible as a thermal average of the Hamiltonian, of course,
E = 〈H(�x〉T ) has been lost.

This lack of knowledge on F is particularly disadvantageous when one deals with
first-order phase transitions, of course, since there several “macrostates” compete,
which at the transition all have the same free energy. Consider, for example, the
thermally driven phase transition of the q-state Potts ferromagnet, that was already
considered in Sect. 2.3.7 in a finite size scaling context. When we study (in the ther-
modynamic limit, N → ∞) the free energy per spin F/N of the Potts ferromagnet as
a function of temperature (in zero field H ), we observe that for temperatures T less
than the transition temperature Tc the free energy of the (q-fold degenerate) ordered
phase is lower than that of the (metastable) continuation of the free energy branch
of the (nondegenerate) disordered phase, while for T > Tc the disordered branch
has the lower free energy. At Tc, the two branches Ford(T ), Fdis(T ) are precisely
equal, but the two branches meet there under different slope. Since we know from
elementary thermodynamics that (β ≡ 1/kBT )

E = (∂F/∂β)H = −kBT
2

(
∂F

∂T

)
H

, (6.4)

the slopes ∂Ford/∂T |Tc , ∂Fdis/∂T |Tc simply are related to the energies E−, E+ in
Fig. 2.20, E+ − E− being the latent heat at the first-order transition. Since it turns
out that the phases that coexist at the first-order transition are separated by a free
energy barrier (that is huge if N is sufficiently large), the finite size scaling analysis
of first-order phase transitions (described in Sect. 2.3.7) is often difficult to apply,
when one relies on straightforward importance sampling. So, one would like to know
the free energies of the ordered and disordered phases Ford(T ), Fdis(T ) explicitly,
since then the transition simply could be located from the condition Ford(Tc) =
Fdis(Tc). The “poor man’s recipe” to achieve this has been based on a method called
“thermodynamic integration” [6.1, 6.2]. From (6.4), we readily recognize that free
energy differences can be computed from

ΔF ≡ F2 − F1 =
∫ β2

β1

E(β)dβ =
∫ β2

β1

〈H〉βdβ. (6.5)

To carry out the integral in (6.5) numerically with sufficient accuracy, one needs
to compute 〈H〉β at a large number of inverse temperatures β intermediate between
β1 and β2 (and this need may be cumbersome: that is why we call this approach a
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“poor man’s recipe”). To get an absolute free energy, one needs to know the free
energy F1 of a reference state. For the Potts ferromagnet in the disordered phase, a
convenient reference state is the completely random state at β1 = 0, where E(0) = 0
and S(β = 0) = NkB ln q is trivially known.For the orderedphase, a similarly simple
reference state would be β2 → ∞, where the system is fully ordered, E coincides
with the ground state energy, and S = kB ln q (without a factor N : we just have a
q-fold degenerate ground state). In practice, it suffices to choose a large but finite β2

as a reference state, for which the deviation of E(β2) from the ground state energy
is negligibly small.

Although we have called this thermodynamic integration approach a “poor man’s
recipe”, one should not be misled: There are cases where this simple-minded
approach actually is themethod of choice, superior in accuracy to both finite size scal-
ing approaches and the sampling techniques that we shall describe in this chapter;
examples for the high accuracy that one can achieve in the location of transition
temperatures of lattice models can be found in [6.3–6.5]. Some of these examples
concern surface effects at first-order phase transitions (“surface-induced ordering”,
“surface-induced disordering” [6.6]), and in such context one needs to locate the
transition temperature of a very large model system in the bulk with extremely high
accuracy to allow for meaningful conclusions.

Even though thermodynamic integration can (at least in favorable cases) yield
information on the free energies of the two phases that coexist at the transition, it
does not yield any information on the barrier between these phases in configuration
space. This free energy barrier is responsible for the hysteresis that very often is
observed in simulations and also in experiments!) near first-order transitions, cf.
Fig. 2.20. In many contexts, it is of great interest to gain information on a suitable
path in a (suitably coarse-grained) “free energy landscape” that connects the free
energy minima that correspond to the coexisting phases with each other.

When one discusses H(�x) as a function of the configuration space coordinate �x
one may speak of a “potential energy landscape”, but clearly the considered space is
extremely high-dimensional, and the landscape in this space is presumably extremely
“rugged”.As always in statistical physics, one ismore interested in a reduced descrip-
tion, referred to as “coarse-graining” above. The most familiar concept of coarse-
graining uses the idea of an “order parameter” as introduced by Landau [6.1]. In
simple cases, like Ising ferromagnets or fluids that undergo a vapor–liquid phase
transition, this order parameter is a scalar quantity (the magnetization 〈m〉T,H per
spin in the case of a ferromagnet, or the density ρ = 〈N 〉T /V in the case of a fluid
occupying a volume V ). Rather than discussing the full canonic or grand-canonic
probability distribution

pcan(�x) = (1/Z) exp[−H(�x)/kBT ]

or
pg,c(�x) = (1/Y ) exp[(μN − H(�x))/kBT ], (6.6)
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Fig. 6.1 Free energy per unit volume f (ρ) plotted versus density ρ, for a Lennard–Jones model of
a fluid (the potential being truncated at rc = 2.21/6σ , with the Lennard–Jones parameter σ being
the unit of length, and shifted to zero there). The data refer to three choices of cubic L × L × L
simulation boxes, with periodic boundary conditions, a temperature T = 0.68Tc, and the chemical
potential being chosen at two-phase coexistence, μ = μcoex, so the two minima are equally deep.
Insert shows a blow-up of the region near the bulk gas density at coexistence, ρg

where Y (T, V, μ) = ∑
N
exp(μN/kBT )ZN (T, V ) is the grand-canonical partition

function andμ the chemical potential, one focusses attention to a reduced description,
for example, in terms of the distribution p(ρ) of the density only,

p(ρ) = (1/Y )
∑
N

∫
d�x exp[(μN − H(�x))/kBT ]δ(ρ − N/V ). (6.7)

Note that p(ρ) can be interpreted in terms of a free energy f (ρ) per unit volume as

p(ρ) = (1/Y ) exp[−V f (ρ)/kBT ]. (6.8)

Figure6.1 presents a plot of f (ρ) versus ρ for a Lennard–Jones model of a fluid at
a temperature T = 0.68Tc and choosing the chemical potentialμ such that in the bulk
(volume V = L3 → ∞) coexistence between vapor and liquid occurs,μ = μcoex(T )

[6.7, 6.8]. These data have been obtained by the technique of “successive umbrella
sampling” [6.9], whichwill be described in the following section. Related data can be
found in [6.10–6.12] for fluids and in [6.13–6.15] for Ising (lattice gas) models. One
can see that the graph of f (ρ) versus ρ exhibits several (rounded) kinks; this behav-
ior (which leads to true singularities in the thermodynamic limit, L → ∞) is more
clearly visible when one considers the variation of βμ̂ with ρ, where μ = (∂ f/∂ρ)T
and μ̂ = μ − μcoex(T ), see Fig. 6.2 [6.7, 6.8]. The small snapshot pictures under-
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Fig. 6.2 Plot of the reduced chemical potential difference βμ̂ versus ρ, for the system with L =
15.8σ fromFig. 6.1. Typical snapshot pictures of system configurations illustrate the evolution of the
system from homogeneous vapor to homogeneous liquid via a sequence of inhomogeneous states
when one crosses the free energy barrier of Fig. 6.1 when ρ is increased. For further explanations
cf. text

Fig. 6.3 Schematic picture
of a “rugged free energy
landscape”, plotted as a
function of two order
parameter coordinates ψx ,
ψy . The two white lines
indicate two possible
trajectories from the region
of one deep minimum to
another one. From Dellago et
al. [6.28]

neath this curve illustrate the different states of the system: For ρ < ρhom/sph the
vapor phase is homogeneous, while near ρ = ρhom/sph a transition takes place to
an inhomogeneous state of the system, where a spherical droplet coexists with sur-
rounding (supersaturated) vapor. The so-called “droplet evaporation–condensation
transition” has received a lot of attention both by simulations [6.7, 6.8, 6.10–6.14]
and by theory [6.16–6.19] (Fig. 6.2).

From an analysis of the free energy barrier in Fig. 6.1 in the region ρhom/sph < ρ <

ρsph/cyl, one can extract valuable information on the surface free energy of nanoscopic
droplets [6.7, 6.8, 6.10, 6.13, 6.16, 6.20]. Then, for ρsph/cyl < ρ < ρcyl/slab a regime
occurs, where the periodic boundary conditions stabilize a cylindrical liquid droplet
rather than a spherical one, before for ρcyl/slab < ρ < ρslab/cyl the periodic boundary
conditions stabilize a liquid slab. Varying the density does not change the total sur-
face area (which is 2L2) in this region, only the amount of liquid phase changes.
Since the two liquid–vapor interfaces occurring then in the system do not have any
curvature on average, one has μ̂ = 0 in this region, P(ρ) is a flat function (indepen-
dent of ρ, if mutual interactions between the two interfaces are negligible). The free
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energy difference Δ f between this state and the homogeneous states at two-phase
coexistence thus simply isΔ f = 2L2 fint, where fint is the interfacial tension. Hence,
measurement of Δ f has been proposed [6.21] as a method to estimate fint via

fint = lim
L→∞(1/2L2)Δ f. (6.9)

Indeed this technique has found widespread and successful use (e.g., [6.14, 6.15,
6.22–6.27).

For ρslab/cyl < ρ < ρcyl/bub, one has again a cylindrical inhomogeneity stabi-
lized by the periodic boundary condition, but now the role of vapor and liq-
uid are interchanged, we find a cylinder of vapor surrounded by liquid and, for
ρcyl/bub < ρ < ρbub/hom, a spherical vapor bubble surrounded by liquid. Again, an
analysis of the free energy f (ρ) in this region yields interesting information on the
surface free energy of bubbles and free energy barriers for bubble nucleation. Thus,
the path over the free energy “mountain” that one has to take when one moves from
homogeneous vapor to homogeneous liquid by increasing the density at fixed volume
of the system contains a lot of physically relevant information, elucidating interfacial
phenomena and the kinetics of transitions from one stable phase to another.

Of course, we observe only a free energy “mountain” since in the step from (6.6)
to (6.7) we have drastically reduced the problem by integrating over all degrees of
freedom apart from a single scalar variable, the density ρ is this case, considering
then f (ρ). When we consider a coarse grained free energy as a function of sev-
eral variables (which we formally combine into a vector �Ψ ), these minima are not
close-by located with respect to each other, multiple trajectories may need consid-
eration, in particular if the free energy “landscape” is a rugged landscape of hills
and valleys (Fig. 6.3) [6.28]. Such “rugged free energy landscapes” [6.29] occur in
such diverse systems as domain patterns in random ferromagnets, diluted magnets
with competing interactions (“spin glasses” [6.30], undercooled fluids near the glass
transition [6.31], and polymers (in particular proteins) under bad solvent conditions
[6.32–6.40]. In all these systems, the step analogous to the step from (6.6) to (6.8)
for the simple fluid, where one focuses on a reduced description in terms of a sim-
ple “order parameter”, is not at all straightforward. In models for spin glasses, this
problem has been circumvented by studying two “real replica”, copies of the same
systemwith a specific choice of random exchange interactions, and defining an order
parameter q as the (normalized) projection of the spin configurations in the replicas
(1) and (2) onto each other, q = (1/N )

∑N
i=1 S

(1)
i S(2)

i (in the case of Ising spins,
S(α)
i = ±1) [6.30, 6.31]. The sampling of the distribution P(q), analogous to the

distribution P(ρ) in (6.7) and (6.8), nevertheless is a challenging computational
problem, since in addition to the thermal averaging (with the Boltzmann factor, cf.
(6.7)) there is the need to carry out an average [· · · ]av over the quenched disorder:
that is, the distribution P{Ji j }(q) obtained for one particular choice {Ji j } of the ran-
dom bonds needs to be averaged over (typically) several hundred realizations of such
random bond configurations [6.30, 6.41–6.46]. For the structural glass transition of
undercooled fluids and for protein folding, on the other hand, even an understanding
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what order parameters one should use to describe these problems is lacking [6.31,
6.34]. Despite the great interest in these “grand challenge problems” of physics, we
shall not emphasize them in this chapter.

However, in all these problems with rugged free energy landscapes, a useful first
step involves the consideration of the energy density of states g(E). This quantity is
introduced rewriting the partition function in (6.2) as

Z =
∫

d�x exp[−H(�x)/kBT ] =
∫

dEg(E) exp(−E/kBT ). (6.10)

In full analogy with (6.7), it can be defined as

g(E) = 1

Z

∫
d�x exp[−H(�x)/kBT ]δ[E − H(�x)]. (6.11)

Sometimes, it is useful to generalize (6.11) to make it a function of several vari-
ables: For example, when one considers the problem of adsorption of an end-grafted
flexible macromolecule (a so-called “polymer mushroom”) on an attractive substrate
surface under bad solvent conditions [6.39], it is useful to consider instead of g(E)

the function g(Es, Eint), where E = Es + Eint, Es being the energy of adsorption
won by the monomers at the attractive surface, while Eint is the interaction energy
betweenmonomers. Such distributions g(E) or generalizations therefore can be sam-
pled by various extensions of “umbrella sampling” [6.47, 6.48] such as “multicanon-
ical Monte Carlo” [6.49–6.55] (Sect. 6.3) or the Wang–Landau method [6.56–6.63]
(Sect. 6.4), for instance.

The implementation of these “extended ensemble methods” [6.64, 6.65] and
relatedmethods [6.65–6.74] has been a very active area of research during the last two
decades, and hence we give here only a simple introduction to some of the concepts
that have found the most widespread use. As an example for the usefulness of such
methods, Fig. 6.4 shows the “phase portrait” of a tethered polymer chain described by
the bond-fluctuation model on the simple cubic lattice [6.75, 6.76], a system [6.39]
already mentioned above, where Es = ∑

i
εsns, ns being the number of monomers

that are in contact with the substrate surface andwin an energy εs each, βs = εs/kBT ,
and Eint = ∑

〈i, j〉
εbni j , ni j being the number of bead–bead pairs that win an interaction

energy εb each, and the sums over i, j run over all the monomers, βb = εb/kBT . Due
to the competition between the two energy scales and the constraints (connectivity
of the chain, anchoring at the surface), this macromolecule model exists in many
different conformations (note that the layered states are, at least in part, crystalline
states), and without the Wang–Landau algorithm [6.56–6.58] it would have required
an enormous effort tomap out the behavior of themodel in the (βb,βs) plane (Fig. 6.4)
in detail.

Of course, a “phase portrait” as shown in Fig. 6.4 tells us only which states dom-
inate for a given point (βs, βb) in the parameter space; it does not tell us anything
about the path that the system takes when we start in a state distinct from equilib-
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Fig. 6.4 Phase portrait for a tethered polymer chain of length N = 64 in the space of the surface
coupling (βs) and bead–bead coupling (βb). The solid lines represent maxima of surface energy and
bead–bead contact energy fluctuations, and separate different states of the “polymer mushroom”:
Desorbed expanded (DE), adsorbed expanded (AE), desorbed collapsed (DC), adsorbed collapsed
(AC) and layered structures (LS). The dashed line is an estimate for the location of the coil–globule
transition, while the dotted lines represent shallow maxima of the surface energy fluctuation. In the
shaded area the free energy landscape could not be resolved well enough to identify states that are
well separated from each other

rium, in order to approach equilibrium as a function of “time” (recall the dynamic
interpretation of Monte Carlo sampling, see Chap.2).

Given a rugged free energy landscape as schematically shown in Fig. 6.3, it is a
nontrivial question which path the system will take to reach equilibrium. To describe
the kinetics of such thermally activated processes in complex free energy landscapes,
a Monte Carlo sampling over an ensemble of trajectories of such processes is desir-
able, and this can be achieved by the “transition path sampling” technique [6.28,
6.77–6.83] and its variants to sample rare events (“string method”, “metadynamics”,
etc.) [6.84–6.90]. As Bolhuis et al. [6.80] put it, transition path sampling can be
viewed as “throwing ropes over mountain passes in the dark”.

Of course, the sampling of trajectories of processes requiring thermal activation
such as crossing barriers in nucleation events via Monte Carlo methods has its sound
theoretical basis in the dynamic interpretation of Monte Carlo sampling [6.91]. In
fact, the first Monte Carlo simulation studies of nucleation processes in the nearest-
neighbor kinetic Ising model were performed decades ago [6.92, 6.93]. However,
this naive (i.e., unbiased) sampling of trajectories over free energy barriers is efficient
only if these barriers are not higher than a few kBT . Via transition path sampling,
one creates trajectories that are biased such that higher free energy barriers (of the
order of 20–100 kBT ) are crossed, and thus very valuable insight into the kinetics of
nucleation processes (e.g., [6.94]) can be gained. In Sect. 6.5, we shall give the flavor
of this transition path sampling method (more details can be found in basic reviews
[6.28, 6.80, 6.83]).
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6.2 Umbrella Sampling

We now return to the problem of calculating free energy differences between two
states 1 and 2, but we now assume these systems have different HamiltoniansH1(�x),
H2(�x). From (6.2), we can immediately derive that

ΔF = F2 − F1 = −kBT ln(Z2/Z1) = −kBT ln

(∫
d�x exp[−βH2(�x)]∫
d�x exp[−βH1(�x)]

)
. (6.12)

Following the very pedagogic account given by Frenkel and Smit [6.95], we first
use (6.12) to justify the “overlapping distribution method” [6.96]. Suppose that we
carry out an importance sampling study of system 2. For every configuration space
point �x that is generated in the resulting Markov chain, we can compute also the
potential energy H1(�x) of system 1. (We focus here on the case that both systems
have exactly the same volume V and same particle number N .) We then can obtain
the probability of ΔE = H2(�x) − H1(�x) as

p2(ΔE) = (1/Z2)

∫
d�x exp[−βH2(�x)]δ[H2(�x) − H1(�x) − ΔE]. (6.13)

Due to the delta function, (6.13) can be rewritten as

p2(ΔE) = (1/Z2) exp(−βΔE)

∫
d�x exp[−βH1(�x)]δ[H2(�x) − H1(�x) − ΔE]

= (Z1/Z2) exp(−βΔE)p1(ΔE) (6.14)

In full analogy to (6.13), p1(ΔE) is the probability density of finding a potential
energy density ΔE between systems 1 and 2, when one samples the states of the
system 1. Using (6.12), we obtain

ln p2(ΔE) = β(ΔF − ΔE) + ln p1(ΔE). (6.15)

From (6.15), we see that the two functions ln p2(ΔE) and ln p1(ΔE) − βΔE should
be identical, apart from a constant offset βΔF . Thus, if there exists a range of
ΔE where the two distributions ln p2(ΔE) and ln p1(ΔE) − βΔE have sufficient
overlap, one can obtain βΔF from a best fit. Of course, in practice, this method can
work only if the two systems differ only very little (e.g., two Ising systems at slightly
different values of the magnetic field H ).

Another consequence of (6.14) is seen when one integrates this equation overΔE
from −∞ to +∞. Since p2 is normalized to unity, this yields

1 = exp(βΔF)

∫ +∞

−∞
dΔE exp(−βΔE)p1(ΔE) = exp(βΔF)〈exp(−βΔE)〉1,
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that is
exp(−βΔF) = 〈exp{−β(H2(�x) − H1(�x))}〉1. (6.16)

Here 〈· · · 〉1 means that averages are taken in a sampling with system 1. Again (6.16)
is practically useful if the two systems 1 and 2 differ only very little.

The idea of “umbrella sampling” [6.47, 6.48] now is to enhance the overlap
between the distributions p1(ΔE) exp(−βΔE) and p2(ΔE) by carrying out a biased
sampling with a suitable chosen weight function Π(�x). Biased sampling is derived
by rewriting (6.1) as follows

〈A(�x)〉0 =
∫
d�xΠ(�x) exp[−βH0(�x)]A(�x)/Π(�x)∫
d�xΠ(�x) exp[−βH0(�x)]/ Π(�x)

= 〈A(�x)/Π(x)〉0,Π/〈1/Π(�x)〉0,Π , (6.17)

where the index Π at 〈· · · 〉0,Π is a reminder that the weight contains an additional
factor Π(�x) in the statistical weight for the states �x , in addition to the Boltzmann
factor.

We use this to rewrite (6.16) as follows

〈exp{−β[H2(�x) − H1(�x)]}〉1
=

∫
d�xΠ(�x) exp[−βH2(�x)]/Π(�x)∫
d�xΠ(�x) exp[−βH1(�x)]/Π(�x)

= 〈exp[−βH2(�x)]/Π(�x)〉Π/〈exp[−βH1(�x)]/Π(�x)]〉Π. (6.18)

Here, (6.17) is used for the special caseH0(�x) = 0. In order to be able to sample
both the numerator and the denominator with acceptable accuracy, the “bridging
distribution” Π(�x) must have sufficient overlap with both the important regions of
configuration space of systems 1 and 2. This bridging property ofΠ(�x) is responsible
for the name umbrella sampling.

In practice, it is often advantageous to work not only with a single bridging distri-
bution Π(�x), but with many distributions intermediate between 1

Z1
exp[−βH1(�x)]

and 1
Z2

exp[−βH2(�x)]. Suppose, there exists a parameter Δψ that distinguishes
between H2 and H1. Then, it often is useful to divide the interval Δψ in n steps
Δψ/n. The optimum choice of n, however, in the general case is a subtle matter
[6.95]. Another important drawback is that the function Π(�x) is not known a priori,
it must be guessed, using the knowledge on the Boltzmann weights of the systems
1 and 2. As Frenkel and Smith [6.95] put it, “constructing a good sampling distribu-
tion used to require skill and patience”, and therefore initially this method did not
find widespread use. However, there are situations where the implementation of the
method is rather straightforward. One such scheme is the technique of Virnau and
Müller [6.9] termed “successive umbrella sampling”, to which we turn now. This
method has the advantage that by extrapolation of results from one “window” to the
next (adjacent) window one can estimate the weight function rather simply, and one
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also can obtain rather reliable error estimates for this procedure. This algorithm has
been used for the study of liquid–vapor transitions [6.25, 6.27] and of liquid–liquid
phase separation [6.26, 6.97]. For simplicity, we follow [6.9] using the language
appropriate for a liquid–vapor transition, and simply take the number of particles
N as the order parameter. We are interested in the distribution P(N ) for a given
choice of variables V, T and μ in the grand-canonical ensemble, at temperatures T
distinctly lower than the critical temperature. Then, P(N ) has two peaks: one for
particle numbers close to Nv = Vρv and another close to N� = Vρ�, where ρv, ρ� are
the densities of coexisting vapor and liquid in the thermodynamics limit, provided μ

is close to μcoex, and in between Nv, N� there occurs a region with a deep minimum
(precisely at μcoex we know that P(N ) ∝ exp[−V f (ρ)/kBT ], with f (ρ) shown in
Fig. 6.1, for example). However, to sample the distribution efficiently, it is better to
sample the reweighted distribution Psim(N )

Psim(N ) = P(N ) exp[−w(N )], (6.19)

where in the optimum case w(N ) = ln P(N ), because then Psim(N ) would be per-
fectly flat. We note that this is the same idea as used in multicanonical sampling (see
Sect. 6.3.) and Wang–Landau sampling (see Sect. 6.4), of course. However, P(N )

initially is completely unknown.
The strategy [6.9] now is to divide the region of all particle numbers from N = 0

to some N = Nmax into m overlapping windows of width ω, and investigate one
small window after the other. A histogram HK (N ) monitors how often each state N
is visited in the window [kω, (k + 1)ω], We denote the values of the kth histogram
at its left and right boundary by Hk� ≡ Hk(kω), Hkr ≡ Hk[(k + 1)ω], and define the
ratio rk as

rk = Hkr/Hk�. (6.20)

After a predetermined number of Monte Carlo steps per window, the (unnormal-
ized) probability distribution is estimated recursively

P(N )/P(0) = (H0r/H0�)(H1r/H1�) . . . (Hk(N )/Hk�)

= Π k−1
i=1 ri (Hk(N )/Hk�) (6.21)

with N ∈ [kω, (k + 1)ω]. Probability ratios in this equation correspond to free
energy differences. Care is needed at the boundaries of a window to fulfill detailed
balance: If a move attempts to leave the window, it is rejected, and the previous state
is counted once more for the histogram. The number of Monte Carlo steps (count
of insertion or deletion trials) is not increased, however, as these moves neither
contribute to the statistics.

As one samples one window after the other, a weighted simulation amounts to
replace Hk(N ) by Hk(N ) exp[(wk(N )], and the weight function wk(N ) is estimated
by extrapolation: After P(N ) has been estimated, w(N ) is extrapolated quadrat-
ically into the next window. The first window is usually unweighted. Virnau and
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Müller [6.9] also give evidence (supported by phenomenological arguments) that
the statistical errors are basically independent of window size, and carefully discuss
the propagation of systematic errors. An application of this technique was already
shown in Figs. 6.1 and 6.2.

6.3 Multicanonical Sampling and Other “Extended
Ensemble” Methods

Let us consider the problem of thermally driven first-order transitions, as they occur
for instance in the case of the well-known q-state Potts model [6.98]. As discussed
already in Chap.2, the probability distribution PL(E) of the internal energy in a
simulation using lattices of size L × L(d = 2) or L × L × L (d = 3 dimensions)
in the transition region has two rather sharp peaks, separated by a deep minimum
in between (cf. also the Ansatz equation (2.99)). When the peaks have equal weight
[6.99, 6.100] (“equal weight rule”), the transition from the ordered phase (stable for
T < Tc) to the disordered phase (stable for T > Tc) occurs, giving rise to a rather
sharp peak in the specific heat, which develops into a delta function (representing
the latent heat of the transition) as L → ∞.

It was rather obvious from the data presented in Chap. 2 that it is very difficult
to obtain accurate date on this specific heat peak by naive Monte Carlo sampling,
because for large L the transitions between the two peaks of P(E) occur very rarely,
but it is necessary to sample many such transitions to estimate the relative weights
for these peaks. In Chap.4, it was described that by single histogram reweighting
[6.101] and multiple histogram reweighting [6.102] the accuracy can be significantly
improved, since Monte Carlo data yielding a distribution PL(E) for one inverse
temperature β can be reweighted to neighboring temperatures in an interval Δβ ∝
1/

√
N (where N = Ld here). Nevertheless, if the sampled distribution has a double-

peak structure, the problem of estimating correctly the relative weights of the peaks
remains.

The multicanonical Monte Carlo method [6.49–6.54] addresses this problem not-
ing from (6.10) that

PL(E) = gL(E) exp(−βE) (6.22)

and suggesting to choose a reweighting with the weight function

wmuca(E) ∝ 1/gL(E) for Emin ≤ E ≤ Emax, (6.23)

where the interval [Emin, Emax] is the range of energies of interest for the considered
transition. Of course, if gL(E)were known, the problemwould be solved, the specific
heat could be calculated from gL(E) analytically, and no Monte Carlo sampling
would be required. But gL(E) is not known, one can only try to find a “working
approximation” [6.103] of the weight function wmuca(E). After such a function has
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been constructed, one performs an actual Monte Carlo simulation with this function,
to obtain a final estimate of gL(E). Then, one can use (6.22) to obtain averages at
the desired values β of interest.

The drawback of multicanonical Monte Carlo is that finding a suitable approx-
imate weight function is not straightforward. (Note that the problem is essentially
the same as in standard umbrella sampling: This is no surprise at all, since multi-
canonical Monte Carlo can be viewed as a reformulation of umbrella sampling [6.64,
6.95, 6.103].) In the case of the Potts model, it turned out useful to sample PL(E)

for a small lattice (where the minimum in between the coexisting phases is not yet
very deep), and obtain gL(E) accurately for small L , using then finite size scaling
concepts (cf. Chap. 2) to predict an approximation for gL(E) at a large value of L .
After having then found a good estimate for the actual gL(E) at this value of L , one
can go on to still larger lattices. We refer the reader to the original papers for details
[6.49–6.54]. This method can also be generalized to other variables (e.g., studying
the first-order phase transition of an Ising model varying the magnetic field [6.14],
or varying the chemical potential difference in the case of phase-separating polymer
solutions [6.12, 6.24]).

For systems with rugged free energy landscapes, finite size scaling methods for
estimating weight factorswmuca(E) often do not work; for example, for biomolecules
one particular size is only of interest, or for spin glasses, the weights change toomuch
when the system size is increased. If one does not want to rely on “ad hoc per hand
estimates” [6.103], one must try to use a systematic recursive method [6.103–6.105].
Writing the weight of state α as

w(α) = exp[−b(Eα)Eα + a(Eα)] ≡ [−S(Eα)], (6.24)

where S can be interpreted as the associated entropy and assuming that the energy
spectrum is discrete (step size ε), one can derive a recursion [6.54]

bn+1(E) = bn(E) + ĝn(E)[ln Hn(E + ε) − ln Hn(E)]/ε, (6.25)

ĝn(E) = gn(E)/[hn(E) + gn(E)], (6.26)

gn(E) = Hn(E + ε)Hn(E)/[Hn(E + ε) + Hn(E)], (6.27)

hn+1(E) = hn(E) + gn(E), h0(E) = 0, (6.28)

Hn(E) being the histogram entry at the nth step of the recursion. See the monograph
by Berg [6.54] for a justification of (6.25)–(6.28). We emphasize, however, that a
much more straightforward construction of weights for a multicanonical simulation
is achieved by the use of Wang–Landau sampling [6.56–6.68], see next section.

We mention at the end of this section a much more straightforward sampling
strategy to create an extended ensemble, which is known as “parallel tempering”
or “replica exchange Monte Carlo” [6.65, 6.66, 6.68]. One performs a set of m
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canonical Monte Carlo simulations at different values βi , where i = 0, . . . ,m − 1,
with β0 < β1 < · · · < βm−2 < βm−1.

For these runs standard Boltzmann weight factors exp[−βiH(�x] are used. From
time to time, one attempts to exchange neighboring β values,

βi → βi−1, βi−1 → βi , i = 1, . . . , n − 1 (6.29)

at fixed configuration of the systems, just treating the exchange in (6.29) as an
additional type of Monte Carlo move, which is subjected to the standard importance
sampling acceptance criterion. Of course, the set of values {βi } has to be chosen
such that a reasonably large acceptance rate results. Obviously, this requires that the
distributions PL(E) for βi and βi−1 have a strong overlap. Thus, the number m of
neighboring temperatures must scale likem ∝ √

N as N → ∞, but nevertheless the
method is useful, particularly for systems such as glasses and spin glasses [6.29,
6.31, 6.41–6.46].

6.4 Wang–Landau Sampling

TheWang–Landau algorithm [6.56–6.63] is an elegant iteration method to construct
directly the energy density of states, g(E), in (6.10). This method has the merit of
great simplicity and therefore finds widespread applications [6.61]. The idea is to
perform a random walk in energy space with a flat histogram. One can also gener-
alize this method to other variables (e.g., sample for an Ising ferromagnet g(E, M)

where M is the magnetization), but such generalizations will not be considered here.
Unlike histogram methods where one extracts estimates of g(E) from probability
distributions generated by standard Monte Carlo simulations, temperature plays no
role in this algorithm at all! Transitions between microstates (e.g., spin flips in an
Ising model) are carried out according to probability

p(E → E ′) = min{g(E)/g(E ′), 1} (6.30)

If g(E) where known in beforehand, a Markov process based on (6.30) would
generate a flat histogram. Since g(E) is not known in before hand, an iteration process
needs to be performed to construct g(E), starting from a simple initial guess. In the
absence of any a priori knowledge on g(E), it is natural to choose as an initial density
of states simply g(E) = 1, for all E . For simplicity, we restrict here attention to a
case where the energy spectrum is discrete and bounded (Emin ≤ E ≤ Emax), as it is
the case for an Ising model or a lattice model for a polymer chain, but we emphasize
at the outset that such a restriction is not necessary, and many successful applications
of Wang–Landau sampling to off-lattice models (like fluids or polymer chains with
Lennard–Jones interactions) have been given [6.61].

Since the actual g(E) is very different from g(E) ≡ 1, it is necessary to have a
procedure that leads quickly away from this initial condition. This is achieved by
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replacing g(E) by g(E) times f , where the initial guess of the modification factor
f1 is f1 = e1, whenever a state with energy E is visited. During this random walk
in energy space controlled by (6.30), one accumulates a histogram H(E); that is,
starting out with H(E) = 0 for all E , one replaces H(E) by H(E) + 1 whenever
E is visited. The moves that are carried out to realize (6.30) are just the standard
moves that one also would use in a standard Monte Carlo simulation that attempts
to sample the Boltzmann distribution (e.g., spin flips of an Ising model, random
displacements of an effective monomer to a new position in a model for a polymer
chain). This sampling process of the histogram is continued, until the histogram
H(E) is “reasonably flat”. In practice, it has turned out that a useful criterion for this
“flatness” is to require that the minimum entry in the histogram is not smaller than
80% of its mean value [6.56–6.58].

When this flatness has been achieved in the first iteration step, one resets all
histogram entries H(E) to zero and performs a sampling with a modification factor
f2 = √

f1 (and in the i th step, one chooses fi = √
fi−1). Otherwise, the procedure

is identical to the procedure followed in the first step. This procedure is iterated
until fi reaches a minimum value, which in practice is chosen to be of order fmin ≈
exp(10−8). While the detailed balance principle clearly is violated in the early stages
of the iteration, this is no problem in the final run.

The final density of states g(E) then is used to calculate averages, for example,
the specific heat

C(T ) = (〈E2〉T − 〈E〉2T )/(kBT
2), (6.31)

where moments 〈Ek〉 are straightforwardly computed from g(E) as

〈Ek〉 =
∑
E

Ekg(E) exp(−βE)/
∑
E

g(E) exp(−βE). (6.32)

Of course, it is possible to use the run with the final choice fmin to obtain more
detailed information. For example, in the study of Ising models, one would like to
estimatemoments of themagnetization distribution 〈mk〉T . Sampling of the full (two-
dimensional) joint density of states g(E,m) would solve this problem, but for large
systems this would require a huge computational effort. Typically, it is sufficient (and
much easier) to only take “microcanonical” averages, 〈|m|k〉E , from which then the
desired canonical averages follow,

〈|m|k〉T =
∑
E

〈|m|k〉E g(E) exp(−βE)/
∑
E

g(E) exp(−βE), k = 1, 2, 3, . . . .

(6.33)
As an example, we recall a recent study of first-order interface localization–

delocalization transitions in thin Ising films with competing boundary fields [6.106].
Here, one considers the Ising Hamiltonian on a simple cubic lattice in a L × L × D
geometry, with periodic boundary conditions in x and y directions only. In the z-
direction, one has a free boundary condition, and in addition surface magnetic fields
H1 and HD = −H1 act on the first and last layer of the film, in the z-direction. In
these surface planes n = 1 and n = D, one also chooses exchange interactions Js
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different from the exchange J in the bulk. Thus, the Hamiltonian is (Si = ±1)

H = −J
∑

〈i, j〉bulk
Si Sj − Js

∑
〈i, j〉surfaces

Si Sj − H1

∑
i∈n=1

Si − HD

∑
i∈n=D

Si . (6.34)

Studying this system for temperatures below the critical temperature Tcb of the
bulk Ising models, there occurs a regime of temperatures Tc(D) < T < Tcb where
the total magnetization of the thin film is zero, because two domains of equal size but
opposite magnetization occur, stabilized by the surface magnetic fields of the same
sign and separated by an interface in the center of the film. However, for T < Tc(D),
the interface gets bound to either the left or the right wall, and hence one has a
nonzero magnetization when the interface is localized near one of the walls, since
then one of the domains is much larger than the other. When Js/J exceeds a critical
value, the transition is of first order, and then a study by finite size scaling methods
is very difficult [6.107].

Schulz et al. [6.106] applied the Wang–Landau algorithm for the choice H1/J =
0.25 and Js/J = 1.5, using thicknesses D = 6, 8 and 12 lattice spacings, while
the lateral linear dimension was varied up to L = 128. Figure6.5 shows typical
data for the fourth-order cumulant U4 = 1 − 〈m4〉/3〈m2〉2 plotted versus inverse
temperature. At a first-order transition, this quantity is predicted [6.108] to diverge
towards minus infinity proportional to −L2 at the first-order transition, and indeed a
deep and very sharp minimum develops (Fig. 6.5). Unfortunately, it was found that
already for D = 12 (and L = 128) the convergence of the Wang–Landau algorithm
turned out to be problematic, due to “entropic barriers” in the phase space [6.106].

Such entropic barriers were first pointed out and carefully analyzed by Neuhaus
andHager [6.109] for the case of the two-dimensional Isingmodel. They showed that
both themulticanonicalMonteCarlomethod and theWang–LandauAlgorithm suffer
from this problem in a similar way; if entropic barriers are too high, the configuration

Fig. 6.5 Reduced
fourth-order cumulant U4 of
a thin Ising film of thickness
D = 8 plotted versus inverse
temperature for different
linear dimensions L (note
that for L = 32 a full
histogram g(M) of the
magnetization was
employed). For L = 48 and
L = 64 multiple iterations
were performed, allowing to
obtain error estimates, as
indicated. The arrow
indicates the estimate of the
extrapolated critical
temperature, J/kBTc(D)
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space of the system is insufficiently sampled, and this lack of ergodicity leads to
results that are systematically wrong. In the case of the d = 2 Ising model transition
from positive to negative magnetization, the entropic barriers occur in the two-phase
coexistence region, for example, when a transition from a droplet-type configuration
to a slab-like domain configuration should take place (analogous to the transition
discussed in Figs. 6.1 and 6.2). The “transition state” that amounts to the barrier has
a lens-type shape of a very elongated droplet (with a linear dimension L in its long
directions) [6.109], and it is very unlikely to reach such a state with the standard
Monte Carlo moves, which do not involve any bias towards such a state.

Entropic barriers have the effect that the time to sample the full equilibrium
density of states grows exponentially with the linear dimension L of the system
[6.109]. For both the multicanonical and the Wang–Landau algorithm even without
entropic barriers, there is already a large effort required, since the energy space to be
sampled increases proportional to the particle number, Emax − Emin ∝ N , and hence
performing a simple random walk type motion one would predict that the relaxation
time scales like N 2. Practical experience shows, however, that some correlation
effects do occur in this diffusion process, so the actual relaxation time increases
even faster [6.60, 6.74]. In practice, it is advantageous to divide the energy interval
Emax − Emin intomany subintervals, inwhichWang–Landau sampling can be carried
out in parallel (but care must be taken to deal with the boundaries of these intervals
correctly [6.59]).

Thus, the judgement of accuracy for the Wang–Landau algorithm (and similarly,
for themulticanonicalmethod) is somewhat subtle. It is always advantageous to carry
out multiple independent runs and try to estimate the errors from these. However,
there are cases where lack of ergodicity really is a problem, such as problems involv-
ing very dense configurations of polymer chains (see, e.g., Fig. 6.3). Good results are
only obtained if the set of Monte Carlo moves is large enough so the system does
not get trapped in such configurations.

In view of all these problems, it is not surprising that in spite of these extended
sampling methods problems such as spin glasses, structural glass transition, protein
folding, are still heavily debated, but interesting progress clearly has been obtained
[6.29].

6.5 Transition Path Sampling

Here we return to the problem already alluded to in Fig. 6.3. Suppose the system
is stable or metastable in the basin near the starting points (white dots) of the two
trajectories, that is, typically it will stay there for a very long time. Only very rarely
it will follow a path over high saddle points in a complex free energy landscape to
make a transition into another deep basin (arrows).

The aim of transition path sampling then is to gain information on all probable
path ways, in order to analyze the transition mechanism. For example, in the context
of chemical reactions, one would like to identify the “reaction coordinate” [6.77];
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in the case of crystal nucleation from the melt, one wants to get information on the
crystal, structure size, and shape of the nucleus that forms [6.110]; etc. This “reaction
coordinate” need not be a scalar, but may contain several variables: For example, in
nucleation from an unmixing binary fluidmixture one expects that both the size of the
droplet and its composition change during the growth of the droplet from subcritical
to supercritical.

Since the pathways collected with transition path sampling are trajectories con-
sistent with the markovian master equation description of Monte Carlo sampling,
the full information on the kinetics of the transition can be extracted [6.83]. In fact,
this technique and its ramifications [6.84–6.90] has taken an impressive development
since its invention, and we can give here only the flavor of the approach, and refer
to the quoted literature for details of its implementation. We also emphasize that
transition path sampling can be adapted to cases where the underlying dynamic sim-
ulation method is not Monte Carlo but Molecular Dynamics or Brownian Dynamics
[6.83]. However, also in these cases the weight of the trajectories in the “transition
path ensemble” is obtained by Monte Carlo methods. The idea is to carry out a ran-
dom walk in the space of trajectories rather than in configuration space. The basic
step generates a new path {�x (n)({t})} from an old one {�x (0)({t})}. The underlying
dynamics of the system that is simulated defines a “path ensemble” PAB{�x({(t)}},
where we denote the initial state as A and the final state as B. The initial condition
is prepared by placing the system in a heat bath at temperature T , and hence the
distribution of initial conditions is just the standard canonical distribution, but some
variable is constrained so that the state point falls in the region of one minimum in
the free energy landscape (Fig. 6.3) where all trajectories start.

In order that all trajectories are compatible with the path ensemble, one introduces
a transition probability p[{�x (0)(t)} → {�x (n)(t)}] that satisfies the detailed balance
condition with PAB{�x({(t)})},

PAB
{�x (0)({t})} p

[{�x (0)(t)
} → {�x (n)(t)

}]
= PAB

{�x (n)({t})} p
[{�x (n)(t)

} → {�x (0)(t)
}]

. (6.35)

The transition between individual states (at one time t of the Markov process,
�x (0)(t) → �x (n)(t)) hence is replaced by a transition between two full trajectories,
such as shown in Fig. 6.3.

This probability p then can again be written as a product of a “generation prob-
ability” of a new path and an “acceptance probability”, and from (6.35) one then
readily can postulate a Metropolis importance sampling rule. Of course, the subtle
problem is the generation of new paths with a reasonably high acceptance probabil-
ity. To solve this problem, one mostly relies on the so-called “shooting algorithm”
[6.28]. For this purpose, the path is divided into many small time slices. From the
randomly selected time slice t ′, one carries out a move to a new state, �x(t ′) → �x ′(t ′)
according to the rules of the underlying dynamics. From the new state �x ′(t ′), for-
ward trajectories (that end up in B) and backward trajectories (that end up in A) are
generated, so that one can glue one forward and one backward trajectory together
to get a new full trajectory going from A to B. This new trajectory eventually is
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accepted (or rejected), depending on the Metropolis test based on (6.35). Of course,
in order to be able to start such a sampling, an initial trajectory must be available.
Just as in ordinary Monte Carlo sampling, where the initial state does not need to
be similar to the states characteristic for the final thermal equilibrium, for example,
one can start the simulation of an Ising ferromagnet always from a perfectly ordered
spin configuration irrespective of the temperature of the simulation, one can start
transition path sampling from a completely atypical trajectory, and then try to relax
the system to converge towards the dominating trajectories. Of course, it depends on
the model chosen whether such an approach is practically feasible or not (and also
the task of finding an initial trajectory is a nontrivial task!).

Before proceeding, we discuss a simple example, nucleation in the three-
dimensional Ising model with nearest-neighbor exchange [6.94]. Pan and Chandler
[6.94] chose a temperature T = 0.6Tc, a lattice of linear dimension L = 32, and the
magnetic field chosen H = −0.55, but the initial state was chosen to have positive
magnetization, constraining the system such that the maximum size of the clusters of
overturned spins was NA = 26. Since classical nucleation theory (using the known
interfacial free energy of the Ising model) yields critical cluster size N ∗ = 200, the
“reactant” state which should contain a supercritical cluster was chosen to have
NB = 260 overturned spins in the largest cluster (the actual critical cluster size was
found to be near N ∗ = 115, so NB was chosen large enough). An initial trajectory
was obtained by generating large overturned clusters with umbrella sampling, and
running Monte Carlo trajectories from such states, until a path connecting A to B
could be built. Even if this initial path were uncharacteristic for the transition path
ensemble, equilibrationwas no problem, since this trajectorywas relaxedwith 25,000
moves before the sampling was started, and then 1000 independent trajectories were
generated (one every 100 moves). From these trajectories, one can also construct
the so-called “transition state ensemble” [6.28]: This is the ensemble of states {�x}
from which 50% of the trajectories lead back to A, while 50% lead forward to B.
Figure6.6 shows histograms of the cluster size N ∗ and surface area S∗ in this tran-
sition state ensemble [6.94], and hence illustrates that the concept of a well-defined
size of a critical droplet (made by classical nucleation theory [6.111]) clearly is a
severe simplification, as expected [6.93].

A useful concept in transition path sampling is the “committor distribution”. It is
defined as the fraction of trajectories started in A and going via a state �r to reach the
state B after a time t [6.83]

PB(�r , t) ≡
∫ D�x(t ′)P({�x(t ′)})δ(�r0 − �r)hB(�x(t))∫ D�x(t ′)P({�x(t ′)})δ(�r0 − �r) . (6.36)

Here, hB(�x) = 1 if x ∈ B and zero else, paths that start at time t = 0 at �r = �r0 but do
not end up at time t in the region B are not included in the numerator, while they are
included in the denominator. Thus, the committor distribution is a statistical measure
for “how committed is a given configuration to reach the ‘product state’ B” [6.83].
In an practical simulation, only a finite sample ofN trajectories started at t = 0 at a
point �r in configuration space is available, and then (6.36) can be written simply as
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Fig. 6.6 Distribution of
cluster size (a) and surface
areas (b) in the transition
state ensemble, obtained
from transition path
sampling [6.94], for a nearest
neighbor simple cubic Ising
ferromagnet at 60% of its
critical temperature and a
field H/J = −0.55
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pB(�r , t) ≈ 1

N
N∑
i=1

hB(�xi (t)). (6.37)

Analogously one can define pA(�r , t), and a formal definition of the “transition
state ensemble” then becomes [6.28, 6.77–6.83]

pA(�r) = pB(�r), (6.38)

where we also have invoked a time-independent form of the committor (counting all
events that first reach A or first reach B, irrespective how long it has taken).

While transition path sampling is rather straightforward to implement in the exam-
ple of nucleation in the kinetic Ising model (Fig. 6.6), where one has a qualitative
insight into the kinetics of the process and the nature of transition states a priori,
there are problems where no such knowledge is available, for example, in the folding
process of complex off-lattice models for proteins [6.34]. In such cases, it is useful to
combine then the transition path sampling with complementary sampling strategies
to obtain information on the free energy landscape, for example, the replica exchange
method, that has been mentioned in Sect. 6.3 [6.34]. Since at the time of writing “for
large proteins the computational effort due to both system size and long time scales
becomes prohibitive” [6.34], this subject will remain an area of further research.
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6.6 Concluding Remarks

In this chapter, methodic advances in Monte Carlo sampling have been described
that overcome, to some extent, the limitation of the standard importance sampling
algorithm that no information on the partition function and hence the free energy is
available. This limitation has hampered the study of cases where several thermody-
namic states of the system (corresponding to valleys or basins of attraction in the free
energy landscape of the system) compete with each other and are separated by large
barriers. The standard example of this situation are first-order phase transitions, but
other cases where the free energy landscape is “rugged” and the order parameters
distinguishing the various basins is not well understood (spin glasses, proteins, etc.)
may be even more interesting. The methods that yield information on the relative
weights of these states described by the basins often yield also information on the
height and nature of the free energy barriers between them, a question which is
interesting in its own right. In fact, transition path sampling then addresses also the
question of the kinetics of the pathways along which such barriers are crossed.

Many of the techniques described here start out from the old [6.112] and well-
known (e.g., Fig. 8 of [6.91]) fact that Monte Carlo sampling gives not only informa-
tion on averages such as written in (6.1) and (6.3), but also distribution functions are
obtained which contain valuable information. While the use of distribution functions
to justify the finite scaling analysis of first- and second-order phase transitions (see
Chaps. 2–4 of this book) now is standard practice, including histogram reweighting
methods [6.101, 6.102], only since about 1991 [6.49] the problem of free energy bar-
riers (that may contain, among other things, information on interfacial free energies
[6.21]) has become the focus of methodic development of sampling strategies. The
old idea of umbrella sampling [6.47] has been rediscovered, and further developed,
in many different variants (e.g., [6.9, 6.49–6.55, 6.66–6.73], and much interesting
insight into various problems of statistical thermodynamics of condensed matter has
been gained.A particularly simple but efficient approach to sample the energy density
of states, Wang–Landau sampling, has been proposed 10 years later, in 2001 [6.56,
6.57], nevertheless is already the most widely used method in many different con-
texts, from the accurate estimation of complex phase diagrams of magnetic systems
[6.113] to membrane proteins [6.114]. In view of the rapid development of methods
during the last two decades, it is likely that further improvements of methodology
will occur in the near future, but now the methods described here should allow a
wealth of further useful applications.

Of course, other methodic aspects outside the scope of this chapter (e.g., cluster
algorithms for spin models with long range interaction [6.115] and for off-lattice
fluids [6.116], finite size scaling for asymmetric fluid criticality [6.117] and – last
but not least – Quantum Monte Carlo methods, which even have started to compete
with quantum chemistry methods [6.118–6.121]) have also seen major progress.
Thus, Monte Carlo simulation in statistical physics continues to gain importance.



Chapter 7
Rejection-Free Monte Carlo

7.1 Introduction

So far, we have been using the rejection Monte Carlo algorithms. To remind us, the
algorithms proceed from state x to possible state x ′ as outlined in Algorithm 1.

Algorithm 1 Accept/Reject Monte Carlo Algorithm
1: Choose initial state x
2: for n-of-samples do
3: Select a new state x ′
4: With probability p accept, i.e. set x = x ′
5: With probability (1 − p), x ′ is rejected
6: end for

The probability will depend on some change induced by the state change as for
example in the case of the Metropolis-Hastings Monte Carlo. If we are to construct
Monte Carlo methods that do not involve any form of accept/reject criterion in the
sense outlined above and as it was used in the previous chapters, then we have to
select states (or events) that for sure will be accepted. Thus, the methods will be
(synchronously or asynchronously) event-driven [7.1] (see Algorithm 2).

Algorithm 2 Event-Driven Algorithm
1: for n-of-samples do
2: Identify all possible events
3: Identify the event with the smallest time stamp �t
4: Set time t = t + �t
5: end for

Here we will expose methods that rely on rates between states thus the sequence
that ultimately will be generated evolves in time (see Fig. 7.1). However, not as in the
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x
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x

t

Fig. 7.1 The lhs panel shows the typical systolic propagation of time for example in theMetropolis
Monte Carlo. Sometimes new state proposals are rejected (circles) and the previous state is the new
state. The rhs panel depicts the leaps in time that are made to achieve a rejection free algorithm

previous chapters systolically, driven by a constant increment in time, but by leaps
of various length in time. This also opens up the possibility to make rigorous the
notion of time in Monte Carlo methods.

7.2 Rejection-Free Methods

Consider a state space � and a sequence {xtk ∈ �} of states from the state space.
Often we simply write i or j etc. to label the states. Here we assume t0 < t1 < · · · <

tk < · · · . So far we have had �t = tk − tk−1 constant, i.e. the system was moved
forward in time by a constant stride. Furthermore, for two states (xk−1, xk) we have
the Markov property so that the sequence {xtk ∈ �} is a Markov chain.

Let us now look at continuous-timeMarkov chains {xt ∈ �|t ∈ R, t ≥ 0}. For the
chain to be a continuous-time Markov chain the following condition needs to apply

P(x(t + τ) = j |x(τ ) = i, x(u) = k, 0 ≤ u ≤ τ) = P(x(t + τ) = j |x(τ ) = i) .

(7.1)
Define

pi j (t) := P(x(t + τ) = j |x(τ ) = i) = P(x(t) = j |x(0) = i) (7.2)

and for any state i we have (for N possible states)

N∑

j=1

pi j (t) = 1 . (7.3)

Let P(0) = limt↘0 P(t) = I be the initial condition. Then the matrix R defined
by

lim
h↘0

P(h) − I

h
= P ′(0) = R (7.4)
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Fig. 7.2 The figure shows
the general situation where
the circles denote states in
state space that belong to the
same state i

i
j

j
‚rj i

rji

rj j
‚‚

rij

rjj
‚rij

‚

is the infinitesimal generator of the continuous-time Markov process with rate ri j

∑

j=1, j �=i

ri j = −rii (7.5)

and

ri j = lim
h↘0

pi j (h)

h
≥ 0 and rii ≤ 0 . (7.6)

Define ri := −rii > 0 to be the rate corresponding to state i . Given R, then for
all t ≥ 0

P ′(t) = RP(t) . (7.7)

and
P(t) = Re−Rt (7.8)

as the first-passage-time distribution and further

pi j = ri j e
−ri j t . (7.9)

Sincewe are talking about first-passage only, only one of the possibilities can happen.
Thus, rather than focusing on the transition probabilities (c.f. Fig. 7.2) as we

have in the previous chapters, we can focus on the rates between states opening up
to models where there is no Hamiltonian. Even more so, the rates themselves may
depend on time. If they do not then the Markov process is stationary.

Let ni denote the population of state i . Given that we are dealing with a thermal
system then ni must be proportional to exp{−F(i)/kBT }. In equilibrium if we have
detailed balance then

niri j = n jr ji . (7.10)
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Thus, what is needed for amodel is a state space� and a set of rates R, i.e. (�, R).
This can for example be a set of chemical reactions with the corresponding rates.

We envisage that at any given time for a state i not all states j are accessible. Thus
it is convenient to relabel the currently accessible states with a new label. We arrive
at a list of N possible events and a list with corresponding rates

{En ∈ �} with n = 1, . . . , N (7.11)

{rn} with n = 1, . . . , N (7.12)

From a computational point of view, it is immediately apparent that what is needed
is a well performing bookkeeping algorithm for the events and the rates as they may
change after an event has been chosen (see later).

Let us consider this for the Ising model. It was pointed out by Bortz et al. [7.2]
that the probability of accepting new configurations in the Ising model is very low
in some cases. Consider the case when the temperature is low. Then two spins will
have likely the same orientation and thus a reversal has very low probability. Thus,
out of the N attempts only a very low fraction will result in changes. Suppose only
attempts are made that are successful. For this the rates ri j from state i to j need to
be known a priori.

In the Ising case we know transition rates among states a priori. For the two-
dimensional Ising model

H = −J
∑

<i, j>

Si S j Si = ±1 (7.13)

with its spin-up spin-down symmetry we have the situations as shown in Table 7.1.
Altogether we have ten possible states, depending on the number of neighbors the
central spin is surround by. Each of these states we assign a class.

Assume further that the transition probability between states is given by

p = x

1 + x
with x = exp{−�H/kBT } , (7.14)

then all possible transitions ri, are given.
One possibility is to use (7.9) to draw time increments for the event to happen.

(This algorithm is known as the first-reaction method [7.3]). For this we generate a
random number ρ ∈ (0, 1) and compute

ti j = −r−1
i j ln(ρ) . (7.15)

Table 7.1 Classes for the kineticMonte Carlo (n-fold way) algorithm proposed by Bortz et al. [7.2]
Corresponding to each class i there is a probability pi
Spin ↑ (+1) ↓ (−1)

Neighbours 4 3 2 1 0 0 1 2 3 4

class 1 2 3 4 5 6 7 8 9 10
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Thus, for every state change we know the probability and the first passage times.
What remains to do is to identify the state change i → j . For this we select the
reaction coordinate that comes first in time

�t = min
i j

ti j . (7.16)

Then this state change is performed and time advances (see Algorithm 3)

t = t + �t . (7.17)

Algorithm 3 First Reaction Monte Carlo Algorithm
1: Initial time t = 0
2: Choose initial state i
3: for n-of-samples do
4: Set up list of transition rates ri j (size N )
5: Generate N random numbers ρ j from a uniform distribution on (0, 1]
6: ti j = r−1

i j ln(ρ−1
j )

7: �t = mini j ti j
8: Carry out event i → j that is minimum
9: Update t = t + �t
10: i ← j
11: end for

Hence, we only perform those state changes that actually occur. This is in contrast
to the procedure that we have developed in the previous chapters. Note that this
algorithm uses O(N ) to build the list of transition rates, O(N ) for the number of
random numbers and O(N ) to determine the minimum time.

A further development on this idea was put forward by Gibson and Bruck [7.4]
with their next reaction method. The method only uses one random number and
time proportional to the logarithm of the number of reactions due to the use of a
dependency graph, eliminating costly recalculations of the transition rate list (see
also the composition and rejection stochastic simulation algorithm [7.5]).

Another aspect is, that there may be relatively less significant events, i.e., mini-
mal changes in transition rates. This idea has led to the development of the τ -leap
algorithm. τ -leaping [7.6, 7.7] requires the knowledge of the rate change. Further,
the assumption is made that during the of τ -leap the propensity function is assumed
to stay constant during each leap.

The obvious difference to the Metropolis Monte Carlo algorithm is that time does
not advance in fixed increments but rather leaps in non-constant strides. It must
further be pointed out that the transition probabilities change at every step. Indeed,
one of the key features is that the distribution of rates is coupled to the state space [7.8]
and can change. For the Ising case there is no such problem. This can be seen when
we consider the two-dimensional case shown in Diagram 7.2.
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This translates into the class scheme from Table 7.1.

A spin flip can change the transition probability and with it the class.
The origin of the algorithm that has partially been exposed above can be traced

back to Young and Elcock [7.9], Bortz et al. [7.2] (for the Ising model, n-fold-way),
Gillespie [7.3, 7.10] (chemical reaction) and Cox [7.11]. In their formulation the
algorithm, know now as kinetic Monte Carlo the choice of the transition that is going
to take place is made slightly different (for reviews see for example [7.12–7.16]).
Also the Optimized Direct Method [7.17] and the Sorting Direct Method [7.18] have
been developed as variations of the basic idea.

The starting point is a choice of a state the system is started in. This determines the
possible states that the system can transition into and the corresponding rates ri j . The
next step is to compute the sum over all the possible rates from i to j , i.e. all possible
reaction paths. The next step then is to pick one of the possible reaction paths with
equal probability followed by advancing the time as shown in Algorithm 4.

Algorithm 4 Kinetic Monte Carlo Algorithm
1: Initial time t = 0
2: Choose initial state i at random
3: for n-of-samples do
4: Set up list of transition rates ri j (size N )

5: Compute Ri, j = ∑ j
k=1 rik for j = 1, ..., N

6: Compute Ri = Ri,N
7: Generate ρ from a uniform distribution on (0, 1]
8: Choose i such that Ri, j−1 < ρRi ≤ Ri j
9: Carry out event j
10: Update i → j
11: Generate ρ from a uniform distribution on (0, 1]
12: �t = R−1

i ln(ρ−1)

13: t = t + �t
14: end for

The beauty of the kinetic Monte Carlo Method is that it easily generalizes to
arbitrary states and reactions. This is why it has been used formany condensedmatter
systems [7.9, 7.19–7.21] with certain refinements [7.4, 7.18, 7.22–7.24] and coupled
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to molecular dynamics [7.25]. Further developments are the coarse-grained kinetic
Monte Carlo [7.13, 7.26] and the first-passage kinetic Monte Carlo algorithm [7.27].

Let us return to the initial example of the Ising Model. Let ni be the number of
spins in class i (see Table 7.1), then we need to choose the relative weights ni pi
according to Algorithm 4 and once a class has been chosen a spin in that class is
chosen with probability 1/ni .

Fichthorn and Weinberg [7.28] showed that under the condition of detailed bal-
ance and the effective independence of the events, the Algorithm 4 yields a Poisson
process and that static and dynamic properties are consistent with the Hamiltonian
dynamics [7.29]. However, detailed balance is not necessary! As we will see later,
the kinetic Monte Carlo method is used for non-equilibrium situation and where
detailed balance is not fulfilled but global balance is achieved.

Note that number of operation, i.e. the complexity is O(N ). Makysm [7.30]
showed that using a binning method and recursive search trees, the complexity can
be brought down to O(log2 N ) [7.23].

For completeness, even though we are in the chapter on rejection-free Monte
Carlo, here is a rejection algorithm for the model pair (�, Q).

Algorithm 5 Rejection Kinetic Monte Carlo Algorithm
1: for n-of-samples do
2: Set up list of transition rates rn (size N )
3: Compute an estimator for the sum of rates r̄
4: while state not selected do
5: Generate ρ from a uniform distribution on [0, N )

6: Compute n = (I nt)(ρ) + 1
7: Select n if n − ρ < rn/r̄
8: end while
9: n is new state
10: end for

7.3 Parallelization

For the Ising model, Lubachevsky [7.31] has succeeded to parallelize the Monte
Carlo algorithm based on the ideas put forward in the more general context by
Chandy andMisra [7.32, 7.33]. He formulated the algorithm as a distributed discrete-
event system. Various methods have been designed specifically with lattice models at
focus [2.34–2.36]. Also the scaling properties of these type of algorithms have been
investigated [7.37, 7.38] associating the development of the individual time incre-
ments at the individual processors with time increments corresponding to depositions
and thus identifying this with surface growth (Kardar–Parisi–Zhang equation [7.39]).
The parallelization of the τ -leap has been done byXu et al. [7.40] and for the presence
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Fig. 7.3 For the simplest parallel kinetic Monte Carlo algorithm, we assume that the topology for
the processors is that of a lattice (for simplicity here a simple square lattice with the processors (P)
at the nodes of the lattice) with possible periodic boundary condition (dashed lines). The solid lines
represent bi-directional communication channels (lhs). The rhs panel shows the possibility that a
processor has been assigned more than site, say for the 2-D Ising model, L/ l lattice sites. The gray
shaded area is the part where no communication between the processors is needed for a decision to
flip a spin

of long-range interactions see [7.41]. Also much effort has gone into parallelization
of the Gillespie ansatz, for example, Komarov [7.42].

The key problem in the parallelization is to avoid event time incompatibilities
with communications. The solution that Lubachevsky [7.31] has put forward is the
strict synchronization (c.f. Fig. 7.3 and Algorithm 6). The problem is solved in this
algorithm using a global synchronization at the slight expense of efficiency. The algo-
rithm presented here is aiming at the above outlined Ising situation. We assume two
functions nextState(i, ti , neighbours(i)) which calls upon the neighbor processors
for the corresponding states s j and nextTime(ti ) delivers the next time.

Algorithm 6 Lubachevsky Parallel Monte Carlo Algorithm
1: s′ = si
2: t ′ = ti
3: for n-of-samples do
4: if ti ≤ min j∈neighbours(i) ti j then
5: s′ = nextState(i, ti , neighbours(i))
6: t ′ = nextTime(ti )
7: Global synchronize
8: t = t ′
9: s′ = s
10: Global synchronize
11: else
12: Global synchronize
13: Global synchronize
14: end if
15: end for
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Assume that in the Ising case the lattice is much larger than the number of proces-
sors and that there are L/ l lattice sites per processors (i.e. L × L lattice with l × l
blocks). There are now interior and boundary sites to be handled by the Algorithm 6.
Korniss et al. [7.43] have argued that the synchronization steps in the algorithm are
not necessary. If the same random number generator runs on each of the processors
with the same initial seed, they argue that the probability of equal-time nearest-
neighbor updates is of measure zero. Thus they suggest to treat the interior spins
(gray shaded region in Fig. 7.3) like regular spins and use

p = min{1, exp(−�H/kT )} (7.18)

with �t = − ln(ρ) (ρ the random number) advancement in time. For the boundary
spins the criterion in Algorithm 6 is applied. To ensure freedom of a deadlock a
barrier is used for the boundary spins with a wait until the local time t becomes less
than or equal to the same quantity for the neighbours.

For the kinetic Monte Carlo algorithm for the Ising model Lubachevsky [7.31]
introduced an additional class Nb on top of the 10 classes for the boundary spins.
Assume as above that the linear system size is L and that there are 4l boundary spins
per processor. Then Nb = 4(l − 1). The basic idea is to use the original Monte Carlo,
for exampleMetropolisMonte Carlo, for the boundary spins and for the interior spins
the kinetic Monte Carlo. Thus the algorithms proceeds as outlined in Algorithm 7.
For this we augment the 10 classes with the additional class Nb.

Algorithm 7 Lubachevsky Parallel Kinetic Monte Carlo Algorithm
1: Initial time t = 0
2: for n-of-samples do
3: Set up list of transition rates ri = ni pi plus Nb

4: Compute Rk = ∑k
i=1 ri

5: Generate ρ from a uniform distribution on (0, 1]
6: Choose i such that Ri−1 < ρRi ≤ Ri+1
7: Choose a spin with equal probability within the class i
8: if spin is within the interior then
9: Flip the spin
10: else
11: Wait until the local simulated time ≤ neighbour processor
12: Apply Metropolis Monte Carlo to the spin
13: end if
14: Update time
15: end for

A slightly different approach has been taken byMartinez [7.44] by a synchronous
time decomposition of the master equation (synchronous parallel kMC method
(spkMC)). The basic idea is to create so called null events advancing the internal
clock of each processor. This is done without altering the stochastic trajectory of the
system. Further developments have been done specifically for the reaction-diffusion
problems (see [7.45] and references therein).
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Due to the success of other parallelization algorithms on GPUs, an algorithm was
proposed by Jimenez and Ortiz [7.46], Klingbeil [7.47] and Agostino et al. [7.48].
Also discrete-event approaches have been developed [7.49] specifically for the Gille-
spie ansatz.

7.4 Lifting

As the name of this section suggests we augment the state space � with one or more
additional variables. Let us first examine this idea for the Ising model in the case of
conserved energy. Assume that we add the extra variable or degree of freedom to the
Hamiltonian [7.50] (7.13)

H′ = e −
∑

<i, j>

Si S j Si = ±1 (7.19)

with �′ = N × �. The extra variable e allows to lift the system out of the otherwise
constraint hyperspace of constant energy. Set e to an appropriate value according to
the initial energy. We can construct a Markov chain by choosing a spin at site ν at
random. We change the spin direction at site ν to obtain �H for the energy change
in the Ising Hamiltonian. If we loose energy, then we transfer the energy to e and
accept the change. If we would gain energy, then we accept the change under the
condition that e has enough energy.

Let us now look at the more general case. Chen et al. and others [7.51–7.55]
constructed a non-reversible Markov chainMonte CarloMethod (LiftedMetropolis-
Hastings) as for example also in the (Hamiltonian) Hybrid Monte [7.56] (see also for
the Bouncy Particle Sampler method [7.57]). The effect of this lifting is a reduced
mixing time of the Markov chain (at best reduced by the square root of the original
time).

So far we almost always used the detailed balance condition for the transition
probability W and the invariant distribution p which we want to obtain from a
Markov chain

p(x)W (x, x ′) = p(x ′)W (x ′, x) for all x, x ′ ∈ � . (7.20)

This is not a necessary but sufficient a condition for the transition probability. One
of possible solutions to (7.20) is the Metropolis Hastings transition probability

W (x, x ′) = q(x |x ′)min

{
1,

p(x ′)q(x |x ′)
q(x ′|x)p(x)

}
(7.21)

with the propositional probability q. The Hybrid Monte Carlo Method [7.56] has
made use of this propositional probability.

Consider the global balance condition for the transition probability W [7.58]
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∫
p(x)W (x, x ′)dx =

∫
p(x ′)W (x ′, x)dx ′ (7.22)

which we need to really to fulfill and the constraint

W (x, x ′)W (x ′, x) = 0 for all x, x ′ ∈ � . (7.23)

W ’s that fulfill criterion 7.22 and criterion 7.23 are said to check a maximal global
balance condition [7.59, 7.60].

Following the idea of adding additional degrees of freedom, we augment the
system by an auxiliary variable e. Thus for the distribution p this results in

p(x, e) = p(x)p(e) (7.24)

and for the above example (7.19) this would be

p(e) ∝ exp{−βe} . (7.25)

and fix the propositional probability as

q(x ′, e|x, e) =
{
1, if x ′ = x + e�s

0, otherwise
(7.26)

where the statement x ′ = x + e�s is meant to express that x ′ and x should not differ
too much. Thus we updated the state in the direction given by e. This is continued
until rejection occurs. Then we choose a new e′ and continue with (x ′, e′)which lifts
the rejection into the lifting space rendering the entire method rejection-free. The
probability for the choice of e′ is based on the condition (7.22).

7.5 Event-Chain Monte Carlo

We will extend the rejection-free Monte Carlo simulation methods by considering
irreversible Markov chains drawing on idea by Peters [7.61] and the concept of
lifting [7.52]. These methods have been successfully developed for the problem of
melting in two dimensions [7.62–7.65]. Extensions have been derived for discrete-
variable models [7.66], classical continuous spin models [7.67, 7.68] and further
generalized to rejection-free global-balance algorithms [7.69] and the forward event-
chain Monte Carlo algorithm [7.58].

Here we follow [7.58] in the exposition of the algorithm. The goal is to use the
ideas of lifting developed in the previous section to develop a rejection-free Monte
Carlo algorithm.We use the extra variable e to suggest a new state. Rather than using
an except/reject on this, we choose a time for the new event to happen and sample
all the state in a chain along the way, until we have reached the transition time. We
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then choose a new e value and continue. To sample the time �s we go about as
in (7.9) and (7.15). For ease presentation we follow the mechanistic language and
assume an energy function E(x) and consider e a velocity (see also Hybrid Monte
Carlo [7.56]). Thus in (7.26) we are looking for displacements in space controlled
by the time �s and the velocity e.

In (7.26)wehavemade a choice for the propositional probability.With the notation
[a]+ = max{0, a} and Metropolis choice of transition probability (7.21) we have

W (x, x ′) = min{1, exp{−�E(x)e}} = exp{−[�E(x)e]+} . (7.27)

To determine the transition time we add up all the moves until we have reached the
event time

�E∗(�s) =
�s∫

0

[�E(x + se)e]+ds (7.28)

and find the time �s by solving the equation

�E∗(�s) = log(ρ) (7.29)

where ρ ∈ (0, 1] is a uniform random number. It rests to choose the transition prob-
ability for e. Here Michel and Senecal [7.58] suggest

p(e′ → e) = δ(e′ + e) (7.30)

In Algorithm 8 the full algorithm is exposed (for parallelization for example for
dense hard sphere and polymer systems see [7.70]).

Algorithm 8 Event Chain Monte Carlo Algorithm [7.58]
1: Initial state x ′ = x0
2: for n-of-samples do
3: Set current event chain length lc = l
4: Set random direction e
5: while True do
6: Set initial sample x = x ′
7: Compute �E∗ = − log(ρ), ρ from a uniform distribution on (0, 1]
8: Compute �s
9: if lc < �s then
10: Compute x ′ = x + lce
11: Set sample xk = x ′
12: Break
13: else
14: Compute x ′ = x + �se
15: Update chain length lc = lc − �s
16: Update direction −e
17: end if
18: end while
19: end for



Chapter 8
Finite Size Scaling Tools for the Study
of Interfacial Phenomena and Wetting

8.1 Introduction

In this chapter, we use the word “interface” in the sense of a boundary between coex-
isting bulk phases (in thermal equilibrium). An example is the interface between
liquid (e.g. water) and gas phases (water vapor) but also interfaces between fluid and
solid phases (e.g. water and ice) can be considered, as well as interfaces between
coexisting solid phases. The generic example are “domain walls” in magnets, sepa-
rating domains with opposite orientation of themagnetization, a case that can already
be studied in the framework of the simple Ising model (Chaps. 2 and 3) where one
has spins on the sites of a rigid perfect lattice pointing up or down.

A crucial feature of such interfaces is that statistical fluctuations are possible both
in the bulk phases (more or less far away from the separating interface) and also with
respect to the interface itself (e.g. its local position relative to a reference dividing
plane, in d = 3 dimensions). In fact, in many cases interfaces can be interpreted as
mesoscopic objects with degrees of freedom on many length scales (below we shall
consider the effect of long wavelength fluctuations, the so-called “capillary waves”).
For this reason, the finiteness of the linear dimension of interfaces (e.g. measured via
the area of the above reference dividing plane) is a crucial aspect, causing important
finite size effects which must be considered when one wishes to study interfaces
(at nonzero temperature) by computer simulation. A crucial observation also is that
directions parallel and perpendicular to the reference plane are not equivalent; this
anisotropy of the interfacial fluctuations needs to be taken into account when one
tries to handle the associated finite size effects in terms of appropriate extensions of
finite size scaling theories (Sects. 8.3 and 8.4).

The excess free energy due to an interface, the so-called “interfacial tension”, in
the literature often also is called “surface tension”. However, in the present chapter
we wish to use the word “surface” in a different meaning: e.g., a magnetic crystal
(described, for instance, by an Isingmodel)may have a surface plane against vacuum,
such that there are no spins on the other side of the surface plane (this casewas already
mentioned in the context of the “free boundary condition”, see Sect. 2.2.2). For a
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fluid system, we may consider the solid wall of a container as such a surface which
simply acts as a boundary condition in terms of a suitable potential. This potential
acts on the fluid particles, preventing them also from crossing the surface (and thus
particles cannot leave the container). Depending on the physical situation envisaged,
the surface potential may be independent of the x,y-coordinates in the surface plane
(representing a flat structureless surface) or not. The latter case may represent just
the so-called “corrugation” of a wall due to the regular periodic arrangement of
atoms in a crystal structure of a solid, or a nanoscopic/mesoscopic inhomogeneity,
as sometimes is of interest in the case of nanostructured materials. Fluids near the
structured walls indeed have become a very active research topic in this century, and
Monte Carlo simulation is a valuable tool to study the properties of fluids under such
conditions. Again, such boundaries cause an excess free energy, which often is called
“surface tension” also but will be called “wall tension” here to avoid confusion with
the interfacial tension.

Estimation of interfacial and wall tensions by Monte Carlo requires nontrivial
extensions of the methodology described in earlier chapters of this book, and shall
hence be considered in the present chapter.

A very important facet of these problems occurs when a fluid confined by walls
may exhibit coexistence between two phases separated by an interface: the poten-
tial acting on the fluid particles due to a wall may lead to an effective “interfacial
potential” exerted by the wall on an interface. This potential may be repulsive or
attractive, and in general will exhibit a nontrivial dependence on macroscopic con-
trol parameters (such as temperature or pressure of the system, etc). In such systems,
onemay observe the so-called “wetting transitions”, whichmay also be considered as
“unbinding transitions” of a bound interface from the considered wall [8.1–8.4]. Just
as the liquid-vapor transition in the bulk is a singularity of the bulk free energy of the
fluid, is awetting transition (whichmay be of first or second order) a singularity of the
wall tension of the considered fluid. As has been emphasized throughout this book,
finite systems do not show the singularities associated with phase transitions, rather
these singularities are rounded (and often also shifted) due to finite size. Computer
simulations deal with finite systems exclusively, and hence finite size effects need
consideration when one wishes to characterize wetting phenomena quantitatively
(Sect. 8.3).

As a final disclaimer, we stress that this chapter is intended as a tutorial guide for
the newcomer, and not at all as a review article that would cover all the work that
exists in the field (and is quite diverse and abundant). When examples are taken from
the groups of the authors of this book, this is done for the sake of convenience only,
and does not mean that related work of other groups lacks value.
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8.2 A Reminder on Finite Size Scaling of the Order
Parameter at Bulk 1st and 2nd Order Phase Transitions

8.2.1 First Order Transitions

At a thermally driven first order transition, such as melting of a crystalline solid, or
the order-disorder transition of the q-state Potts model [8.5, 8.6] on a lattice that
was already discussed in Chap. 2, the low temperature phase is characterized by an
order parameter which (in the thermodynamic limit) discontinuously vanishes at the
transition temperature Tc. The free energy F(T ) near Tc varies linearly as a function
of temperature,

F−(T < Tc) = Fc − S−(T − Tc), (8.1a)

F+(T > Tc) = Fc − S+(T − Tc), (8.1b)

where Fc is the free energy right at Tc (where the free energy branches of the ordered
(T < Tc) and disordered (T > Tc) phases cross), and S−, S+ are the entropies at
the transition (both entropy S and internal energy E exhibit discontinuous jumps
at Tc, in the thermodynamic limit, particle number N → ∞). Since F = E − T S,
we can express the difference �F = F− − F+ near Tc also in terms of the jump
�E = E+ − E− of the internal energy,

�F = �E(T − Tc)/Tc . (8.2)

It is convenient (in a lattice model, assuming a cubic lattice of linear dimension L
with periodic boundary conditions in all d directions of the d-dimensional system) to
define the above quantities F, S, E per lattice site (for off-lattice systems, we could
use a normalization per unit volume). Then the statistical weights of both phases near
the transition are proportional to the quantities a+, a− introduced already in Chap.2,

a+ = q+ exp(�FLd/2kBT ), a− = q− exp(−�FLd/2kBT ), (8.3)

where q−, q+ are the degeneracies of the phases. For the q-state Potts model, the
disordered phase is non-degenerate, q+ ≡ 1, while q− = q, since there are q different
domains the system can be in; but there exist also cases where one encounters a first-
order phase transition between two phases exhibiting a different kind of order. An
example is the anisotropic Heisenberg antiferromagnet in a uniform magnetic field
H , where for H less than Ht one has an antiferromagnet of Ising type (q+ = 2)
and for H > Ht a spin-flop phase (with an XY-like type of order) [8.7–8.9]. The
extension of the finite size scaling description [8.10, 8.11] that is outlined below to
this field-driven transition is given elsewhere [8.12]. Using �T = T − Tc we can
rewrite (8.2 and 8.3) as

a+ = q+ exp(�T�ELd/2kBT Tc), a− = q−(−�T�ELd/2kBT Tc) (8.4)
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which was already used in Chap.2 to discuss the finite size rounding of the specific
heat C(T, L) = ∂〈E〉L/∂T at the transition.

Here we shall rather focus on the description of the distribution of the order
parameter �ψ (recall that for the Potts model the order parameter has q discrete
orientations in a (q − 1) dimensional vector space [8.6]). In the finite system, for T >

Tc and large enough L the distribution simply is a multivariate Gaussian distribution,

P+
L ( �ψ) = N exp

(
− �ψ2Ld

2kBT χ̃+
)
, (8.5)

where χ̃+ is a kind of “susceptibility” measuring the strength of the order parameter
fluctuations in the disordered phase, and N is a normalization factor. Likewise, for
T < Tc the distribution is a sum of q Gaussians centered at the discrete values of
the order parameter �ψk (k = 1, . . . , q) representing the q possible ordered states.
Clearly, this is an obvious generalization of the order parameter distribution of the
Ising model (with a scalar, one-component order parameter) discussed in Chap. 2.
Here we rather point to the fact that this description already yields an interesting
consequence as the thermodynamic limit is approached: the relative weight of the
disordered phase is a+/(a+ + a−) = 1 for T > Tc and 0 for T < Tc but takes a
nontrivial value q+/(q+ + q−) for T = Tc. Hence for L → ∞ and T = Tc we can
write the order parameter distribution as a sum of δ-functions as follows, for T = Tc
(recalling q+ = 1, q− = q)

P∞( �ψ) ∝ δ( �ψ) +
q∑

k=1

δ( �ψ − �ψk), (8.6)

with 〈| �ψk |〉∞ = 〈 �ψ2
k 〉1/2∞ = ψ∞ being the value of the order parameter in the limit

T → T−
c in the thermodynamic limit. From (8.6) one readily finds that at T = Tc

〈ψ2〉∞ = ψ2
∞q/(1 + q), 〈ψ4〉∞ = ψ4

∞q/(1 + q) (8.7)

and hence the fourth-order cumulant [8.13]Uψ

L = 1 − 〈ψ4〉L/[3〈ψ2〉2L ] takes a non-
trivial value at Tc also at a first-order transition,

Uψ
∞ = 1 − 〈ψ4〉∞/[3〈ψ2〉2∞] = 2/3 − 1/(3q), T = Tc . (8.8)

Thus, Uψ
∞ stays 2/3 for all T < Tc, jumps at Tc to Uψ

∞ as quoted in (8.8), and
jumps to zero for T > Tc. For large but finite L , when the delta functions in (8.6)
are replaced by the appropriate Gaussians (such as (8.5)), the quantitiesUψ

L become
smooth functions of T , but still intersect at an (almost) common intersection point,
given by (8.8). Finite-size corrections to this common intersection point are small of
order L−d , while a shift of this intersection point away from Tc is small of order L−2d

[8.11]. As is obvious from (8.4), the width of the region over which the jump of Uψ

L

from 2/3 to Uψ
∞ and further to zero is rounded also is of order �T ∝ Tc/(�ELd).
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However, a nontrivial feature is the prediction thatUψ

L exhibits a minimumwhose
depth diverges to minus infinity proportional to Ld at a position Tmin − Tc ∝ L−d

above Tc [8.11]. This prediction of the phenomenological scaling theory has been
verified byMonte Carlo simulations for the 3-state Potts model in d = 3 [8.11]. Ideas
related to the above description were also developed in [8.14, 8.15].

Thus the observation of a common order parameter cumulant intersection point is
not always a reliable evidence for a second-order transition; if the cumulant exhibits a
deep minimum, rather a first-order transition can be expected. However, as a general
caveat we mention that the correct sampling of the relative weights of the various
phases (that can coexist right at Tc) in the region around Tc often is a very nontrivial
problem, requiring a huge numerical effort. Methods which have been advocated for
this purpose are the replica-exchange framework for Wang-Landau sampling [8.16]
and “simulated tempering” [8.17]with approximatedweights [8.18], for instance. For
a general introduction into these (and other)methods to efficiently sample free energy
“landscapes” accurately, we refer the reader to Chap.6 in this book. We emphasize,
however, that distinguishing correctly the order of phase transitions (and locating
accurately atwhich values of the control parameter they occur) is not just an academic
problem of 20th century physics, but still relevant in many contexts, e.g. phase
transitions discussed in quantum chromodynamics (QCD) [8.19, 8.20]. A recent
overview of QCD as a theory of strong interactions between elementary particles
in the framework of lattice gauge theory and the role of Monte Carlo simulations
of QCD on high performance computing can be found in [8.21] but this subject is
out of our scope here; we only mention that the phase transition of interest there is
the “condensation” of hadrons from the quark-gluon plasma, a phenomenon that is
thought to have occurred in the evolution of the early universe.

As a final remark on first-order transitions, we emphasize that a useful conse-
quence of (8.5)–(8.7) is that not only the fourth-order cumulant Uψ

L of the order
parameter intersects at the common intersection point Uψ

∞ for large L , but actually
such common intersection points do occur for all moments of the order parameter,
and the values of these intersections for 〈ψ2〉L and 〈ψ4〉L are simply the expressions
quoted in (8.7). This property is different for a bulk second-order transition, where
moments do not have common intersection points, as we shall see below. There is
also a simple scaling property [8.12]

〈ψ2〉L/ψ2
∞ = [b + q exp(Z)]/[1 + q exp(Z] (8.9)

where b is a correction to scaling (of order L−d) and Z = −�FLd/kBTc =
−�E�T Ld/kBT 2

c . As demonstrated already in Chap.2 for the specific heat, at first-
order transitions scaling functions can be computed explicitly (in the framework of
the Gaussian approximation for the distribution functions of pure phases).
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8.2.2 Second Order Transitions

For simplicity, we consider now only the case where the order parameter is a scalar,
s (such as in the Ising ferromagnet, discussed in Chap.2). Equation (8.5) then gets
replaced by

P+
L (s) = N exp

(
− s2Ld

2kBTχ+
)
, L 	 ξ , (8.10)

noting that L must (by far) exceed the correlation length ξ . Here χ+(χ−) is
the ferromagnetic susceptibility, which diverges when one approaches Tc, χ+ =
�̂+

(
T
Tc

− 1
)−γ

, χ− = �̂−
(
1 − T/Tc

)−γ

, while ξ = ξ̂±|1 − T/Tc|−ν ; γ and ν are

the standard critical exponents of susceptibility and correlation length, respectively
[8.22, 8.23]. �̂+, �̂− and ξ̂ , ξ̂− are the associated critical amplitudes [8.23].

For T < Tc and L 	 ξ , the system is in the ordered phase, with |s| near the bulk
order parameter s∞, with exponent β [s∞ = B̂(1 − T/Tc)β]. We recall from Chap.2
the double-Gaussian approximation, for T < Tc,

P−
L (s) ∝ exp

[
− (s − s∞)2Ld

2kBTχ−
]

+ exp
[

− (s + s∞)2Ld

2kBTχ−
]

, (8.11)

which should hold for s near ±s∞ only, of course. Rescaling s by s∞, s̃ = s/s∞,
(8.11) can be written as, scaling L by ξ as well (L̃ = L/ξ)

P−
L

(
s̃, L̃

)
∝ exp

[
− (s̃ − 1)2ξ̂−d

2kBT �̂−/B̂2
L̃d

(
1 − T/Tc

)2β+γ−dν]

+ exp
[

− (s̃ + 1)2ξ̂−d

2kBT �̂−/B̂2
L̃d

(
1 − T/Tc

)2β+γ−dν]
. (8.12)

Now if the “hyperscaling relation”

dν = γ + 2β (8.13)

among the critical exponents holds, the temperature dependence has completely
disappeared from P−

L (s̃, L̃). From the two scaling variables, s̃, L̃ we can construct
another scaling variable sLβ/ν and hence we see that the order parameter distribution
P−
L (s) [but this holds also for P+

L (s)] can be considered as a function of the two
variables sLβ/ν , L/ξ , i.e. [8.13]

PL(s) = Lβ/ν p̃(sLβ/ν , L/ξ) , L → ∞ . (8.14)

While (8.10) and (8.12) hold for L/ξ 	 1 only, (8.14) is supposed to hold for all
ratios L/ξ . From (8.14) it is straightforwardly seen that
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〈s2k〉 = L−2kβ/ν s̃2k(L/ξ) , k = 1, 2, . . . . (8.15)

Thus, at Tc (where ξ = ∞) due to the power law prefactor L−2β/ν there is no L-
independent common intersection point 〈s2〉 here, unlike the first-order case. Finally
the cumulant becomes

UL = 1 − 〈s4〉/[3〈s2〉2] = Ũ (L/ξ) , (8.16)

as discussed in more detail in Chap. 2 already. Here we like to draw attention to the
case of the random field Ising model (RFIM) [8.24–8.26]. In this model one has
a random field which is zero on average and spatially uncorrelated (either ±hr or
drawn from a Gaussian distribution, for instance), to model some quenched random
disorder, in the system. For this model it is known that (8.13) does not hold, and
rather is replaced by

γ + 2β = ν(d − θ) , θ = γ /ν; (8.17)

the exponent θ characterizes the violation of hyperscaling. From (8.12) and (8.17)
we immediately recognize that in the argument of the exponential functions a factor
(1 − T/Tc)−νθ must remain: i.e., in the scaling limit (s̃ near unity, L̃ finite, T → Tc),
the order parameter distribution tends towards a sum of two delta functions (and
also P+

L (s̃, L̃) tends to a delta function centered at s̃ = 0). As a consequence, in this
model there is no common cumulant intersection point, as found also by explicit
Monte Carlo simulation results for the RFIM and various related models [8.27–
8.30]. For this reason, the estimation of both Tc and the critical exponents of the
RFIM (which differ from those of the pure Ising model, of course) is a subtle task
[8.30]. We also recall that d = 2 is the lower critical dimension for the RFIM [8.24,
8.26, 8.31]: long-range ferromagnetic order is unstable in d = 2, since the system
can spontaneously break up into domains of finite size, since there exists a length
scale Ldomain(hr) for which the interface tension vanishes [8.31].

We now summarize the results on the finite size effects of the order parameter
distributions at phase transitions as follows: for a system of finite linear dimension L
(in a (hyper) cubic geometry, with periodic boundary conditions) all moments of the
order parameter distribution (〈ψ2〉L , 〈(ψ2)2〉L . . .) are smooth nonsingular functions
of the control parameter (e.g.temperature T ). At first-order transitions, the transition
temperature Tc shows up as a common intersection point of both these moments and
the fourth-order cumulant (cf. (8.7) and (8.8)). Scaling functions (e.g. (8.9)) can be
simply computed, if pure phases are described in terms of Gaussians (e.g. (8.5)). At
second-order transition (with a nonzero order parameter exponent β) moments at Tc
do not intersect at a common intersection point, but rather vary as the appropriate
power of L−β/ν (8.15). Scaling functions such as s̃2k(L/ξ), Ũ (L/ξ) are nontrivial.
Cumulants (8.16) do have (for L → ∞, where corrections to finite size scaling are
negligible, such that (8.14) holds) a common intersection point, which hence is
useful to locate Tc. However, the value of Ũ (0) at which this intersection occurs
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is a nontrivial characteristic of the “universality class” of the considered critical
phenomenon (just like critical exponents [8.22], critical amplitude ratios [8.23], etc.)
All these statements presuppose the validity of the hyperscaling relation, (8.13),
which normally can be taken for granted. Only in special cases (e.g. the RFIM)
where hyperscaling is violated no unique cumulant intersection is possible, since
in this case (8.17) the order parameter distribution (e.g. (8.13)) cannot be reduced
to the simple scaling form, (8.14), it rather tends to several δ-function peaks. Note
that another violation of hyperscaling occurs for systems with mean-field critical
exponents (see Chap.2); in the latter case there is a simple scaling similar to (8.14),
but the correlation length needs to be replaced by a “thermodynamic length” T =
(kBTχψ−2)1/d [8.32].

8.2.3 Anisotropic Finite Size Scaling and Its Application to
Wetting Phenomena: A “Crash Course”

For the benefit of the non-specialist reader we summarize in this subsection the
essential concepts about wetting phenomena and their physical content, as a prelude
to the explanations of the problems encountered by simulation studies of wetting. Let
us consider the vapor to liquid transition of afluid, focusingfirst on the situationwhere
a saturated gas is exposed to a solid wall, that exerts attractive forces to the particles
in the fluid (Fig. 8.1a). If the wall is not wetted by the fluid, a (macroscopically large)
liquid droplet attached to the wall would exhibit a nonzero contact angle θ . As is well
known [8.1–8.4], the magnitude of this contact angle is controlled by the competition
of the liquid-gas interfacial tension (σg) with the difference in wall tensions of the
two coexisting gas (σwg) and liquid (σw) phases, namely by Young’s equation.

cos θ = (σwg − σw)/σg , if σg ≥ |σwg − σw| . (8.18)

If the inequality is not fulfilled, we have either complete wetting of the wall (if
σwg − σw > σg , the actual surface excess energy of the vapor phase then is given by
σwg ≡ σw + σg , because then the wall is coated by a macroscopically thick liquid
layer), or we have complete drying of the liquid phase (if σw − σwg > σg , the
actual surface excess free energy of the liquid phase is given by σw = σwg + σg ,
because then the liquid does not extend up to the wall, which is then coated by
a macroscopically thick vapor layer). In the framework of the lattice gas (Ising)
model of fluids, that is emphasized in this chapter, the particle hole/symmetry of
the model also implies a symmetry between wetting and drying phenomena, just the
roles of liquid and vapor are interchanged, and hence we shall not discuss “drying”
(θ = 180◦; droplets of the liquid would then energetically prefer not to touch the
wall) further. However, Monte Carlo simulations of wetting/drying phenomena can
also be performed [8.33, 8.34] formodels that lack this symmetry between coexisting
phases, e.g. the Asakura-Oosawa model [8.35–8.37] of colloid-polymer mixtures.
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Fig. 8.1 a Schematic cross section through a (macroscopic) droplet of liquid, on a substrate surface
for the case of partial wetting, showing the contact angle θ and the interpretation ofYoung’s equation
[8.1–8.4] in terms of mechanical equilibrium of the surface tensions at the contact line (upper part).
A magnified view of the three phase contact line, where the liquid-gas interface meets the substrate
surface, is shown just below the topmost part. Note that this picture is still coarse-grained, the cross
section of the liquid gas interface is just shown as a line (neglecting fluctuations, intrinsic interfacial
thickness, etc.). On a scale of (at least) a fewmolecular diameters, this contact line is rounded away,
since the liquid-gas interface bends over into a flat liquid film of microscopically small thickness
 (of the order of a few molecular diameters). In contrast, for the case of complete wetting of the
surface (middle part), the substrate is covered by a uniform liquid film of a macroscopic thickness ,
and droplets cannot exist and spread out (θ = 0). Due to the temperature dependence of the various
interfacial free energies, a wetting transition at a temperature T = Tw may occur (bottom part),
the substrate being “dry” (or partially wet) for T < Tw and wet for T > Tw. b Schematic phase
diagram of a semi-infinite fluid in contact with a wall (upper right part) showing in the temperature
(T ) density (ρ) plane the coexistence curve in the bulk. The enclosed two-phase coexistence region
ends at the bulk critical point (Tcb). The wetting transition is a singularity of the fluid associated
with the wall and occurs at the temperature Tw at the vapor density according to the gas branch of
the coexistence curve. The corresponding profile of the (coarse-grained) density ρ(z) of the liquid
(z is the distance from the wall) from a partially wet (or non-wet) state of the surface (left middle
part of the figure) and a completely wet state (left upper part of the figure). The area of the shaded
region in these plots denotes the surface excess density ρs. Along the coexistence curve ρs is finite
for T < Tw and jumps to infinity at Tw, for a first-order wetting transition. The lower part of the
figure shows the variation of ρs with ρ in the undersaturated vapor region. For Tw < T < T pre

c (the
prewetting critical point) there occurs at ρpre a first-order prewetting transition (jump of ρs). From
Binder et al. [8.3]

As it has already been emphasized above, this description ofwetting in terms of the
contact angle of droplets really is a macroscopic description. When it is attempted to
directly simulate wall-attached droplets (e.g. [8.38–8.48], one encounters numerous
difficulties: (i) for a droplet of finite volume, the vapor pressure of the fluid surround-
ing the droplet in equilibrium is enhanced in comparison with the bulk coexistence
pressure (Gibbs-Thomson effect). Since the surface tension of the droplet depends
on its radius of curvature, analysis of the equilibrium between the droplet and the
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vapor is very subtle [8.42–8.48]. A simplification only arises for “nonvolatile liquids”
(e.g., polymer chains), for which the vapor density can be strictly assumed to be zero
(e.g. [8.40]). (ii) Small droplets exhibit very long-lived fluctuations of their shape
and surface area, and hence it is extremely difficult to obtain statistically significant
data (see again [8.40] for explicit examples of such fluctuations). (iii) The “contact
line” where the gas-liquid interface of the droplet meets the wall causes another free
energy excess contribution, the so-called “line tension” [8.49–8.51], which modifies
the contact angle of a droplet of radius R by a 1/R correction [8.52–8.54].

Of course, all these difficulties are avoided when one takes the Young equation,
(8.18), for granted, and just tries to find the relevant interfacial and surface excess
free energies (σg, σwg, σw) from suitable simulations separately. Recording the
temperature dependence of both the liquid-gas interfacial tension σg(T ) and of the
difference of the wall-fluid surface tensions of the gas and the liquid, σwg(T ) −
σw(T ), cf. Fig. 8.1a, one can locate the wetting transition temperature. Section
8.4 will describe briefly some of the methods available for the estimation of such
interfacial tensions from Monte Carlo methods.

We emphasize that the intersection of two branches of interfacial free energies
(Fig. 8.1a bottom part) with different slopes at Tw corresponds to a first order wetting
transition. This is the analog of (8.1a), (8.1b) and (8.2), for surface excess free
energies rather than bulk free energies.

However, just as in the bulk where both first-order and second-order transitions
are known to occur, also wetting transitions of both first- and second-order can occur.
For a second-order transition (“critical wetting” [8.1–8.4]) the two interfacial free
energy branches in the bottom part of Fig. 8.1a meet with a common tangent at Tw.
Of course, then the estimation of the interfacial free energies by simulation methods
is not a useful route to locate Tw, in particular since also at a second-order wetting
transition critical fluctuations occur: in the thermodynamic limit, critical wetting is
characterized by both divergent correlation lengths and by divergent relaxation times
(“critical slowing down” [8.55]).

The diverging correlation lengths at critical wetting call for an extension of finite
size scaling methods to this case. However, this problem is not straightforward,
since two distinct correlation lengths occur, characterizing the decay of fluctuations
in different directions: parallel (ξ||) and perpendicular (ξ⊥) to the wall. Note that
the (coarse-grained) density ρ(z) in the z-direction normal to the attractive wall
(Fig. 8.1b) becomes gradually broader as T → Tw from below, and exhibits at T
slightly below Tw already a two-step decay, similar to the completely wet case: ρ(z)
first decreases only up to the value ρcoex

liquid, the liquid density at coexistence, and only
at a much larger distance  from the wall the second step follows, where ρ(z) decays
from ρcoex

liquid to ρcoex
gas (Fig. 8.1b). This second step is nothing but the ordinary liquid-

vapor interfacial profile of the density, when  is large enough. Critical wetting hence
can be interpreted as gradual unbinding of an interface from a wall that exhibits an
effective attractive interaction with the interface. The surface excess density ρs then
does not reach a finite constant as it would for a 1st orderwetting transition (Fig. 8.1b)
but rather shows a critical divergence as T → Tw. Note that for critical wetting the
prewetting phenomenon included in Fig. 8.1b does not occur.
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Fig. 8.2 Schematic description of the systemgeometry used for simulations ofwetting transitions in
Ising models and the occurring fluctuations of an interface bound to the lower wall. For simplicity,
a two-dimensional system is shown, using a M × L lattice, with periodic boundary conditions
in x-direction, while at y = 1 and y = L free boundaries are used, at which surface magnetic
fields ±|H1| act. The fluctuating interface is indicated, separating domains of positive and negative
magnetization (the sign of the magnetization is indicated by the double arrow; it is assumed that
a coarse-graining has been observed on a length scale intermediate between the correlation length
ξ in the bulk and the length scale ξ⊥ characterizing the extent of the interfacial fluctuations in the
y-direction). Then fluctuations of the bulk magnetization in the interior of the domain are averaged
over, and only interfacial fluctuations are left. The local excursions of the interface relative to its
average position in the y-direction are correlated in the x-direction over a length scale ξ||. From
Albano and Binder [8.56]

Now it is important to realize that the profiles of ρ(z) shown schematically in
Fig. 8.1b refer to the thermal average, while the interface weakly bound to the wall is
a stronglyfluctuatingobject (Fig. 8.2) [8.56].An instantaneous snapshot of the system
in aMonte Carlo simulation thenwill resemble Fig. 8.2, if the bulk fluctuations inside
the domains are averaged over. These interfacial fluctuations are strongly anisotropic,
directions perpendicular to the interface and parallel to it are not equivalent, and there
is the need to introduce two correlation lengths ξ||, ξ⊥, which diverge as T → Tw
with different exponents

ξ|| ∝ (Tw − T )−ν|| , ξ⊥ ∝ (Tw − T )−ν⊥ . (8.19)

Equation (8.19) can be shown rigorously to be true for the d = 2 semi-infinite
Ising model with a surface field −|H1|, where also the location of Tw can be exactly
predicted [8.57–8.59] in terms of the inverse function H1c(T ) of Tw(|H1|), for the
square Ising lattice

cosh(2H1c/kBT ) = cosh(2J/kBT ) − sinh(2J/kBT ) exp(−2J/kBT ) (8.20)

and ν|| = 2, ν⊥ = 1. Mean-field theory of critical wetting (with short-range surface
forces, as appropriate for an Ising model with a local surface magnetic field) implies
ν|| = 1, ν⊥ = 0 (i.e., a logarithmic divergence), however [8.1–8.4].While mean-field
theory is believed to hold for d > 3, the case d = 3 is expected to show nontrivial
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critical behavior [8.60] and has led to a longstanding debate (e.g. [8.61–8.67]) that
still is unsettled.

Finally, we emphasize that strictly speaking for wetting phenomena we should
consider a semi-infinite system (as anticipated in Fig. 8.1) while Fig. 8.2 rather
considers a system which is finite in y-direction and uses there an antisymmetric
boundary condition. Actually, early simulations of wetting phenomena [8.61–8.63]
have not used this geometry, but rather used a “thick” film with symmetric walls,
so that (in the incompletely wet state) weakly bound interfaces occur at both walls
(one then has domains with negative magnetizations near both walls, (and a (thicker)
domain with positive magnetization in the center of the film). However, the disad-
vantage of this simulation geometry is that without a positive field in the bulk the
considered system is onlymetastable: the system lowers its free energy, when the two
interfaces meet in the center and annihilate the domain with positive magnetization.
If one would apply a positive bulk field to prevent this, one changes the character of
the wetting phenomena significantly (it corresponds to working off coexistence in
the phase diagram of Fig. 8.1b).

In the geometry of Fig. 8.2, however, there exists always a single interface only,
and one expects that in the state of partial wetting it is either bound to the lower
wall (at y = 1) or to the upper wall (at y = L), due to the antisymmetry of the
chosen surface fields there occurs a bistable symmetry of the state. In contrast, when
wetting (interface unbinding from the wall) occurs, the interface will occur at the
maximumpossible distance frombothwalls (on average), i.e. in the center of the film.
The resulting interfacial transition in such a thin film geometry is called interface
localization/delocalization transition [8.68–8.71]; in order to study it one must keep
the perpendicular linear dimension L finite and consider the limit where the linear
dimensions of the walls (M) tend to infinity. However, only recently it was realized
that taking both linear dimensions L and M towards infinity is the appropriate limit
to extract information on wetting phenomena [8.56]. This will be explained in more
detail in the next subsection. Before this is done, we formulate the scaling theory of
critical wetting for a semi-infinite system. As has been said above, we consider the
surface excess free energy (abbreviating σwg − σw = fs) or its singular part f

(sing)
s

[8.2]

f (sing)
s /kBT = |t |2−αs F̃s(H |t |−�s), t = 1 − T/Tw(H1) → 0 , (8.21)

where H is the bulk field and αs, �s are appropriate critical exponents, defined
in analogy to critical behavior in the bulk { f (sing)

s = |τ |2−αb F̃b(H |τ |−�b), τ = 1 −
T/Tc} [8.22, 8.23] with F̃s, F̃b appropriate scaling functions. The surface exponents
in d = 2 then simply are [8.2, 8.57–8.59]

αs = 0,�s = 3 . (8.22)

As in the bulk, where magnetization and susceptibility are derived as 1st and
2nd derivative of the free energy with respect to the field H , we find surface excess



8.2 A Reminder on Finite Size Scaling of the Order Parameter … 203

magnetization ms and surface excess susceptibility χs here as derivatives of the
surface excess free energy fs, i.e.

ms = −(∂ f (sing)
s /∂H)T ∝ t2−αs−�s ≡ tβs , (8.23)

χs = −(∂2 f (sing)
s /∂H 2)T ∝ t2−αs−2�s ≡ t−γs . (8.24)

From (8.22)–(8.24) we readily get the values of the associated critical exponents

βs = −1 , γs = 4 (8.25)

The surface excess magnetization ms can also be interpreted as the integral of the
magnetization profile

∫ ∞
0 dz[m(z) − mb] = ms, where the bulk magnetization mb

here simply corresponds to ρcoex
gas in Fig, 8.1b, when the analogy between magneti-

zation and density in the lattice gas interpretation of the Ising model is remembered.
So ms simply corresponds to ρs, and the result ms ∝ t−1 then simply means that the
average distance of the interface  from the wall (in the partial wetting regime near
the wetting transition) scales like t−1. This is the same exponent as for ξ⊥, cf. (8.19),
ν⊥ = 1. This information from (8.19)–(8.24) about the scaling theory of critical
wetting can now be used as input for the appropriate extension of finite size scaling
theory. Obviously, semi-infinite systems do not fit into the computer, so understand-
ing the finite size effects that will be observed here is of crucial importance for a
valid simulation study of critical wetting phenomena.

Anisotropic Finite Size Scaling

We recall from the discussion of Fig. 8.2 that for T < Tw we will have a nonzero
magnetization in the system, which can be positive (if the interface is bound to
the lower wall) or negative (if it is bound to the upper wall), while for T > Tc, the
magnetization for large enough L andM should be close to zero. Thus, it makes sense
to simply discuss again the distribution of the total magnetization m, analogous to
PL(s) in (8.14), but now we need to take into account that we have two inequivalent
correlation lengths ξ⊥, ξ|| and two different linear dimensions L andM . It is natural to
postulate that the order parameter scaling function PL ,M(m)will depend on the ratios
L/ξ⊥ and M/ξ||. Since ξ

ν||/ν⊥
⊥ ∝ ξ||, we can use (L/ξ⊥)ν||/ν⊥ξ||/M = Lν||/ν⊥/M as an

alternative second argument of the scaling function: Lν||/ν⊥/M = c is a generalized
aspect ratio of the system.The advantage of this transformation of the scaling function
is that then the temperature dependence only enters via ξ||. Thus the scaling ansatz
that was postulated [8.56] is

PL ,M(m) = ξ
β/ν||
|| p̃(Lν||/ν⊥/M, M/ξ||,mξ

β/ν||
|| ) . (8.26)

It is important to realize that the exponent β that is introduced here is not the
exponent βs, considered in (8.25), just as the order parameter m used is the total
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magnetization (per spin) of the thin film (or strip, in d = 2), rather than the surface
excess magnetization of (8.23). Using again the normalization of PL ,M(m),

+1∫

−1

PL ,M(m)dm = 1 (8.27)

we readily obtain the various moments

〈|m|k〉 = ξ
−kβ/ν

|| m̃k(c, M/ξ||) k = 1, 2, . . . (8.28)

and hence the susceptibility for T ≤ Tw becomes

kBTχ ′ = LMξ
−2β/ν||
|| χ̃ (c, M/ξ||) = cν⊥/ν|| M1+ν⊥/ν||−2β/ν|| ˜̃χ(c, M/ξ||) (8.29)

where we have used the generalized aspect ratio c (which must be held fixed when
M is varied) to eliminate L here; the scaling functions m̃k , χ̃ , ˜̃χ need not be specified
explicitly here. From (8.29) we find that at the critical wetting transition in d = 2 we
must have

kBTwχ ′
T=Tw ∝ M1+ν⊥/ν||−2β/ν|| = M3/2−2β/ν|| . (8.30)

On the other hand, we may consider for a system which is infinite in y-direction
directly the finite size scaling of the surface susceptibility χs in (8.24),

χs = t−γs χ̃ (M/ξ||) ∝ ξ 2
|| χ̃s(M/ξ||) ∝ M2 (T = Tw) . (8.31)

Since the divergence of χ ′ simply comes from the divergence of χs, we can
conclude

kBTwχ ′ |t=0= kBTwχs |t=0 /L = kBTwχs |t=0 /(M1/2c−1/2) ∝ M3/2 . (8.32)

Comparing (8.30) and (8.32) we conclude that the exponent β introduced in
(8.26) simply has the value β = 0; i.e. we have a critical phenomenon, but the order
parameter in the thermodynamic limit disappears discontinuously.

Qualitatively this anomalous critical behavior is easily interpreted: when L is very
large and  ∝ t−1 is still finite, the reduction of the average relative magnetization
〈|m|〉/mb relative to unity is extremely small, 〈|m|〉/mb ≈ 1 − /L , mb being the
absolute value of the magnetization in the interior of the two coexisting domains in
Fig. 8.2. Thus, in the limit L → ∞we have 〈|m|〉 = mb for all t > 0, while 〈|m|〉 = 0
for t < 0. Note that for T = Tw, t = 0, all moments 〈|m|k〉Tw = m̃k(c, 0) take non-
trivial values: at T = Tw, the interface in the geometry of Fig. 8.2 is neither localized
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Fig. 8.3 a Plot of the
squared magnetization 〈m2〉
versus temperature for the
two-dimensional Ising model
on the square lattice in a
M × L geometry, Fig. 8.2
choosing L2/M = c = 9/8
and H1/J = 0.70, showing
three choices of L , as
indicated. The vertical
straight line indicates the
exactly known temperature
Tw [8.57–8.59] of the critical
wetting transition. b Scaling
plot of the data for 〈m2〉
shown in (a) versus M1/2t to
demonstrate that according
to (8.28) 〈m2〉 is a function
of M/ξ|| ∝ Mt2 only. c
Distribution PL ,M (m) versus
m for the choice of
parameters mentioned in (a),
for T = Tw, to demonstrate
the anomalous macroscopic
fluctuations of the order
parameter. From [8.56]

(a)

(b)

(c)

at one of the walls nor is it localized in the center of the film (or strip, respectively
in d = 2 dimensions): the interface exhibits anomalous macroscopic fluctuations
over the entire system. The values m̃k(c, 0) reflect the nontrivial distribution of these
fluctuations, which depends on the generalized aspect ratio c.

A consequence of this behavior is that Tw can be found from searching for com-
mon intersection points of the moments 〈|m|〉, 〈m2〉 etc. plotted versus temperature,
not only from intersections of the fourth-order cumulant UL=1 − 〈m4〉/[3〈m2〉2], as
is usually done. Figure 8.3 demonstrates this behavior for the d = 2 Ising model
[8.56], where the exact solution for Tw is known (8.20). Of course, the value of this
analysis presented in (8.26)–(8.32) is not just that one can reproduce exact results
(8.19), (8.20), (8.22) and (8.25), but this methodology also readily works for systems
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for which no exact solutions is available, such as the Blume-Capel model [8.72, 8.73]
with surface fields. The Hamiltonian of this model is formulated in terms of spins Si
that can take three values Si = ±1 and 0,

H = −J
∑
〈i, j〉

Si S j + D
∑
i

S2i − H
∑
i

Si − H1

∑
i∈ row 1

Si − HL

∑
i∈ row L

Si . (8.33)

The first three terms on the righthand side of (8.33) represent the Blume-Capel
model in the bulk: J is the exchange coupling between nearest neighbor spins on
the lattice, H is the bulk magnetic field, and the parameter D controls the density
of “vacancies” (i.e., sites i with Si = 0). For D → −∞, vacancies are completely
suppressed, and hence the model reduces to the standard Ising model as a limiting
case. The surfacefields H1, HL have alreadybeen introduced in the context of Fig. 8.2.
In Fig. 8.4 we present numerical results for 〈m2〉 and PL ,M(m) for themodel: with the
basic knowledge on Monte Carlo simulations for simple lattice models as exposed
in detail in Chaps. 2 and 3 of this book, it should be a simple exercise for the reader
to reproduce Figs. 8.3 and 8.4a, b on his own (at least for not too large lattice linear
dimensions). From Fig. 8.4c it is evident that the finite size analysis tools described
in this section do allow a convenient estimation of wetting transition temperatures
for a broad class of models exhibiting critical wetting.

We end this subsection with a few comments: (i) just as β in (8.26)–(8.30) denotes
an order parameter exponent for the total magnetization of the film, we also can intro-
duce a susceptibility exponent γ for the total susceptibility (such as χ ′ in (8.30)–
(8.31)). Since we have χ ′

T=Tw
∝ Mγ /ν|| , (8.32) implies γ = 3. This implies that the

standard scaling relation γ + β = �s = 3 holds, as well as the hyperscaling relation
extended [8.74] to anisotropic critical phenomena, ν|| + (d − 1)ν⊥ = 2β + γ = 3.
(ii) Other critical phenomena with anomalous interfacial fluctuations and an order
parameter exponent β = 0 occur for the so-called “filling transitions”, such as con-
densation of a fluid filling a wedge (e.g. [8.75, 8.76], or a corner (in d = 2) [8.77]
or conical or pyramidal pores [8.78]). However, these problems are too specialized
to merit a discussion here. (iii) The jumpwise disappearance of the order param-
eter (β = 0) found here is reminiscent of the behavior at bulk 1st order transi-
tions, and indeed in the latter case we have also found common intersection points
of the moments of the order parameter distribution (8.7). Also in this case, there
did occur an anomalous macroscopic fluctuation, the system can jump between
all coexisting states. However, there are well identifiable distinct states, the order
parameter distribution in the thermodynamic limit simply is a sum of delta func-
tions, unlike the case considered here {(8.26) for L → ∞ is a nontrivial distribution
p̃′(c,mLβ/ν||) = p̃′(c,m), see Fig. 8.3c for an explicit example}. Thus, the common
intersection points of the order parameter moments and cumulants for critical wet-
ting cannot be simply predicted, unlike the case of first-order transitions. (iv) There
exist also cases of anisotropic bulk critical phenomena, where two different critical
exponents ν||, ν⊥ occur, but β > 0. A well-known example is the so-called “Lifshitz
point” [8.79], that can be found in the so-called “axial next nearest neighbor Ising
(ANNNI) model [8.80], for instance. Other anisotropic critical phenomena where
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Fig. 8.4 a Plot of the
squared magnetization 〈m2〉
versus temperature for the
two-dimensional
Blume-Capel model on the
square lattice in a M × L
geometry, choosing c = 9/8,
H1/J = 0.85, D/J = 1.75,
and 5 choices of L as
indicated. From this data
(and related ones for 〈|m|〉
and UL ) the critical wetting
temperatures was estimated
as kBTw(H1)/J =
0.538 ± 0.004. b Scaling
plot of the data of (a) versus
M1/2t , to demonstrate that
ν|| = 2 works also for the
Blume-Capel model, as
expected from the
universality principle of
critical phenomena [8.22,
8.23]. c Plot of H1c(T )/J ,
the inverse function to
kBTw(H1)/J , versus
temperature for a range of
values of D/J , as indicated.
The result for D/J = −∞ is
(8.20). From [8.56]

(a)

(b)

(c)

(8.26) is applied occur in driven systems far from thermal equilibrium [8.81]. The
“canonic” example is the driven lattice gas model,. where particles carry an elec-
tric charge and a field is applied creating a current in a chosen lattice direction (but
Coulomb interactions between the particles are not considered) [8.82]. The transi-
tion to the ordered non-equilibrium steady state of this model can also be analyzed
in terms of (8.26) [8.74, 8.83].
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8.3 Interface and Surface Excess Free Energies
and the Associated Finite Size Effects

Wehave already seen in Sect. 8.2.3, that interface andwall tensions play a crucial role
for understanding wetting phenomena. Of course, these quantities play a crucial role
also for the understanding of nucleation phenomena [8.85–8.88], i.e. the decay of a
metastable phase by the formation of a (nanoscopic) droplet of the new phase, either
via statistical fluctuations alone (“homogenous nucleation”) or facilitated e.g. due to
reduction of the free energy barrier if the droplet is attached to a wall, as in Fig. 8.1
(“heterogeneous nucleation”). The free energy barrier that needs to be overcome
in a nucleation event is controlled by a competition of bulk and interfacial free
energy contributions, and accurate estimation of the latter is crucial for the prediction
of nucleation rates. This is a difficult task, even in the framework of the simple
Ising/lattice gasmodel [8.88].Wealso note that the interfacial and surface phenomena
play a key role for many aspects of nanoparticles and their use in nanotechnology.
Therefore, there has been a strongly increasing interest in recent years to study
interfacial and surface excess free energies by simulation methods. In this section,
we again focus on a few selected methodological aspects of this problem, which
already are encountered in the study of the simple model systems emphasized in this
book, the Ising/lattice gas system and the Lennard-Jones fluid.

Excess Free Energy of Interfaces Between Coexisting Phases

To introduce the subject, it again is useful to consider the simple Ising ferromagnet
with nearest neighbor exchange interaction, which is one of the “workhorses” of this
book, but now we specialize to a geometry of the lattice where one linear dimen-
sion (Lz) is distinctly larger than other(s), (L). We now focus on various choices
of boundary conditions in the z-direction, while in the other direction(s) we take
the standard periodic boundary conditions (PBC), see Chap.2. Suppose we take
free boundary conditions in z-direction but replace the missing rows (in d = 2) or
planes (in d = 3) by rows (or planes) of spins fixed at Si = +1 or Si = −1, respec-
tively (Fig. 8.5a). Then for temperatures T less than the critical temperature Tc,
we expect that such competing boundary conditions enforce the coexistence of two
domains, one with positive magnetization m+ per spin (fluctuating around the value
of the spontaneous magnetization +mcoex, symbolized by the double arrow pointing
upward) and another domain with negative magnetization m− per spin with m near
−mcoex (double arrow pointing downward). Note that at zero magnetic field both the
size of the domains in z-direction, the values of m+, m−, and the local position of
the interface can show fluctuations, as will be discussed below. When we compare
this situation with systems with symmetric choices (++) and (−−) of fixed spin
boundaries, the situation will just differ by the presence of an interface in the case of
the (+−) boundary conditions. This consideration suggests to define the interfacial
tension as excess free energy per unit length (in d = 2) or unit area (in d = 3) of the
interface in terms of the appropriate combination of total free energies in the system,
in d dimensions
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(a) (b)

(c)

Fig. 8.5 Useful boundary conditions to study interfaces in Ising systems, using a simulation geom-
etry of linear dimension(s) L parallel to the interface(s) and Lz in the direction perpendicular to
the interface. In the parallel direction(s), periodic boundary conditions (PBC) are used throughout.
Case (a) uses free surfaces in the layers n = 1 and n = Lz , while spins in the layer n = 0 are
fixed at Si = +1 (denoted by +), and Si = −1 (denoted by −) in the layer n = Lz + 1 (implying
a convention where the lattice spacing is taken to be unity). For T < Tc, two domains with positive
magnetization (m+) and negative magnetization (m−) are then expected to coexist, separated by
an interface (wavy line). Case (b) shows, as an alternative, the anti-periodic boundary condition
(APBC), cf. text. With fully periodic boundary conditions (case c) one also can have coexistence
between the two domains with opposite orientation of the magnetization, but then two interfaces
must occur to satisfy the PBC. From Schmitz et al. [8.89]

σ(L , Lz) = L−(d−1){F+−(L , Lz) − [F++(L , Lz) + F−−(L , Lz)]/2} . (8.34)

Note that the factor 1/2 simply accounts for the fact that in the systems with
symmetric choices of the fixed spins (++), (−−)wehave these fixed spin boundaries
twice, while both of them occur only once for the (+−) system. Of course, for the
Ising model we would have the symmetry F++ = F−−; but the general formula,
(8.34), has the merit, that it can easily be generalized to asymmetric cases, e.g. a
standard Lennard-Jones fluid: then (++) stands for walls with short-range attraction
to the particles, favoring the liquid phase of the fluid, while (−−) stand for walls
with a short-range repulsion, favoring the gas; (8.34) is a “first principles” definition,
it does not imply any assumptions on the local structure of the interfacial region. For
the Ising model (or other symmetric systems, such as the symmetric binary (A,B)
Lennard -Jones mixture, see e.g. [8.90]) an elegant alternative is the antiperiodic
boundary condition (APBC), defined by [the index i of a lattice site stands for the
indices i1, i2, . . . , id in the d directions of the hyper cubic lattices], see Fig. 8.5b

s(i1, . . . , id−1, id±Lz) = −S(i1, . . . , id−1, id) (8.35)

i.e. the sign of the spin is reversed when the interaction crosses a boundary in z-
direction. This APBC is fully equivalent to a system where the bonds in z-direction
have been changed from+J to−J between one pair of rows (or planes, respectively).
Then instead of (8.34) one uses
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σ(L , Lz) = L−(d−1){FAPBC(L , Lz) − FPBC(L , Lz)} . (8.36)

We have deliberately kept the arguments (L , Lz) for σ in (8.34) and (8.36) to
emphasize that one needs to consider finite size effects. As we shall see, one source
of finite size effects is the translational entropy of the interface in the z-direction:
assuming an ensemble where the magnetic field H is fixed at H = 0 (so the linear
dimensions of both positively magnetized and negatively magnetized domains along
the z-directions in Fig. 8.5 on average will be equal) the interface position along the
z-axis is not fixed, but will fluctuate. This translational degree of freedom creates
an entropy −kBT L−(d−1) ln(Lz/0) to σ , where the normalizing length 0 is often
assumed to be the lattice spacing. While in the APBC case the interface can be
anywhere along the z-axis, in the case of Fig. 8.5a the interface will not be close to
one of the fixed spin boundaries. Thus one can expect that this entropic contribution
will differ between the two cases Fig. 8.5a, b.

With PBC also in z-direction only even numbers of interfaces can occur, the
relevant cases being no interfaces (the system being in states with uniformly positive
or negative magnetization or 2 interfaces (as shown in Fig. 8.5c). Then

σ(L , Lz) = 1

2
L−(d−1)

{
F (2)
PBC(L , Lz) −

[
F (0,+)
PBC + F (0,−)

PBC

]
/2

}
. (8.37)

Here F (0,+)
PBC and F (0,−)

PBC denote the free energies of systems with zero numbers of
interfaces, with uniform positive or negative magnetization. Of course, in extremely
elongated systems (Lz 	 L) one may encounter the need to consider systems with
more than 2 interfaces; this problem is relevant for capillary condensation in long
cylindrical pores [8.91] but out of consideration here.

Again we state that for an Ising system F (0,+)
PBC = F (0,−)

PBC = F (0)
PBC because of spin

reversal symmetry, and so the curly bracket in (8.37) then simplifies to F (2)
PBC(L , Lz) −

F (0)
PBC(L , Lz); but (8.37) as it stands is more readily generalized to any systems that

lack a symmetry between the coexisting phases, such as a Lennard-Jones fluid.
Whatever geometry is chosen, the problem remains to compute the free energies

of two (or three) systems of volume LzLd−1 and take the appropriate difference to
isolate the interfacial term proportional to Ld−1. Obviously, this approach is promis-
ing only if free energies can be computed with extremely good accuracy. A general
introduction intoMonte Carlomethodologies to sample free energies and free energy
differences has already been provided in Chap. 6 of this book. Since the free energy
is not a direct output of the Metropolis algorithm, unlike the internal energy or other
derivatives of the free energy, see Chap. 2, the approach is not completely straight-
forward. Nevertheless, the straightforward thermal integration method, where free
energy differences are computed as integrals of the internal energy E(β) consid-
ered as function of the inverse temperature β = (kBT )−1, has been useful. Alter-
natively, one uses F = E − T S and computes the entropy S, from the specific heat
C(T ) as S(T ) = ∫ T

0 [C(T ′)/T ′]dT ′ [8.92]; suchmethods indeed have yielded useful
results for the interfacial free energy of the Ising model (with interfaces perpendicu-
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lar to the z-axis of the lattice) [8.93–8.95]. This thermodynamic integration method
can also be extended to compute the interfacial free energy σ(ϑ) as function of an
angle ϑ that the interface makes with xy plane [8.96]. In this case (in d = 3) one
uses PBC in y-direction, APBC in z-direction, screw periodic boundary conditions
(SPBC) in x-direction (this means a shift of PBC by Nϑ rows in z-direction, such that
tan ϑ = Nϑ/L). Due to the lattice structure, the interface tension of the Ising model
is a function of both polar angles, σ = σ(ϑ, ϕ), but the full angular dependence is
not yet known explicitly. The problem is complicated by the fact that Ising model
interfaces in d = 3 undergo a roughening transition (which for the (001)-interface
on the simple cubic lattice occurs for kBTR/J ≈ 2.454 [8.97]) which is associated
with a diverging correlation length (of interfacial height fluctuations relative to the
average interface plane) [8.98, 8.99]. This diverging correlation length causes both
strong and long lived fluctuations (“critical slowing down” [8.55]) and pronounced
finite size effects.

Before we describe the methods that were used in more detail, we show selected
results on σ(θ) in Fig. 8.6 [8.100–8.102]. For T > TR the angular dependence is
rather weak, its maximal value (for θ = π/4) is enhanced relative to unity by just
a few percent, and for T → Tc this angular dependence disappears altogether (but
there both the order parameter distinguishing the coexisting phases and the interfacial
tension vanish, of course [8.22, 8.23]). For T < TR, on the order hand, the anisotropy
rises strongly (Fig. 8.6b) and reaches a maximum value of

√
2 (there are twice as

many broken bonds for a (110) interface than for a (100) interface, but the area of
the (110) interface is larger by a factor of

√
2). Obviously, for T ≤ 1 one is close to

this asymptotic value.
Neither σ(0) nor the anisotropy ratio σ(π/4)/σ (0) show the least sign of a sin-

gularity at T = TR. This fact is theoretically expected [8.98, 8.99]: the roughening
transition is neither first nor second order, but of “infinite order” (the radius of con-
vergence of a power series in (T − TR) would be zero). Of course, such a weak
singularity clearly is not detectable by Monte Carlo simulations! However, there is a
singularity that is better detectable in the angular dependence: for T ≥ TR σ(θ)has
a quadratic expansion

σ(θ) = σ(0)(1 + Cθ2 + · · · ) , T ≥ TR (8.38)

while for T < TR there occurs a kink singularity

σ(θ) = σ(0)(1 + C ′|θ | + · · · ) , T < TR . (8.39)

The quantity σ̃ ,

σ̃ = σ(0) + d2σ(θ)

dθ2
|
θ=0= σ(0)(1 + 2C) (8.40)

is called the “interfacial stiffness” [8.103] and this quantity plays a central role in cap-
illary wave theory [8.1–8.4, 8.49, 8.104]. Theory predicts that in d = 3 dimensions
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(a)

(b)

(c)

Fig. 8.6 a Dependence of the interface tension γ (θ) normalized by γ (π/2) plotted versus the
inclination angle of the interface relative to a lattice plane (noteσ(θ) = σ(π/2 − θ)by the symmetry
of the simple cubic lattice). Several temperatures T (in units of J/kB) are included, from T =
2.5 (top) to T = 3.8 (bottom). In the limit T → Tc (∼= 4.5115) [8.100]) σ(θ) becomes constant,
independent of θ , but also vanishes according to the power law σ(0) = σ̂ (1 − T/Tc)(d−1)ν , where
σ̂ is a critical amplitude. b Maximum anisotropy σ(π/4)/σ (0) plotted versus temperature. Upper
curve is fromMon et al. [8.96] and overestimates the correct result due to the use of too small lattice
linear dimensions for T near TR ≈ 2.454. The lower curve is based on latticeswith Lx × Ly × Lz =
184 × 504 × 504 lattice sites. For T ≥ 2.9 data due to Bittner et al. [8.101] obtained with the
probability distribution method are included, and agree perfectly with the data from thermodynamic
integration. c Ratio of interfacial stiffness κ and interface tension σ(0) plotted versus inverse
temperature. Circles are deduced from the data on σ(θ) via (8.40), while crosses are due to a
capillary wave analysis of Hasenbusch and Pinn [8.94]. Straight line indicates the roughening
transition. From Block et al. [8.102]
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for T → TR σ̃ (T )J/kBT = (π/2){1 − C ′′[(T − TR)/Tc]1/2 + · · · }, while σ̃ (T <

TR) = ∞. The data shown in Fig. 8.6c are compatible with such a behavior, but they
are certainly no strong evidence yet.

The singular behavior of (8.39) means that an interface for T < TR at small |θ |
looks like a regular staircase of broad terraces (of width proportional to 1/|θ |) sep-
arated by steps having the height of the lattice spacing a, apart from small local
fluctuations. It is useful then to consider the step free energy fs(T ), since one can
show that fs(T → TR) → 0. This vanishing of fs(T ) can also be studied by Monte
Carlo methods [8.96, 8.102] but again a finite size rounding of this singular behavior
must be considered. The vanishing of fs(T ) means that there is a proliferation of
surface step formation, and due to the superposition of many steps with irregular
distances between them the distance of the local interface position from the consid-
ered reference plane in a particular interface configuration can be very large. Fig. 8.2
already gave a schematic picture of such a coarse-grained rough interface (confined
between parallel walls) in d = 2 dimensions. It must be stressed, however, that in
d = 2 we have TR = 0, hence then the regime described by (8.39) does not exist.
But nevertheless the square lattice Ising ferromagnet is a very useful “testbed” for
Monte Carlo methods to study interfacial phenomena, see e.g [8.38, 8.46, 8.48, 8.88,
8.91, 8.105], since both σ(θ, T ) and σ(T ) are known exactly [8.103, 8.106, 8.107].
In particular, σ̃ (T ) = kBT sinh{σ(0, T )/kBT } implies that σ̃ (T → 0) → ∞ since
σ(0, T ) = 2J , while σ̃ (T ) ≈ σ(0, T ) near Tc where σ(0, T ) � kBT . The fact that
σ̃ (T ) reduces to σ(0, T ), or more generally that the angular dependence of σ(θ, T )

vanishes near Tc, also implies that droplet shapes become circular (in d = 2) or
spherical (in d = 3), but at general temperatures droplet shapes are nontrivial [8.107–
8.109]. While this problem has an exact solution in d = 2, large scale Monte Carlo
simulations are needed to study it in d = 3 [8.109].

While the study of the roughening transition [8.98, 8.99] has a long history
(e.g. [8.110, 8.111–8.113]), and also more complicated models closer to real mate-
rials were occasionally studied (e.g. [8.114, 8.115]), addressing the roughening of
real crystal surfaces and interfaces, there is still need for careful large scale Monte
Carlo studies of this problem.

Capillary Waves

The interfacial stiffness σ̃ (T ) is a key concept for describing interfacial fluctuations.
As anticipated already in Fig. 8.2, one wishes to disentangle bulk and interfacial
fluctuations by a suitable coarse-graining. In the vicinity of the critical point of the
Ising model (or of a fluid undergoing a vapor to liquid transition), the characteristic
length scale of order parameter fluctuations in the bulk is the correlation length ξb.
A commonly used idea then is to apply a block analysis method based on a block
linear dimension B > ξb [8.116] [e.g., if the interface is oriented perpendicular to
the z-axis, one divides the xy-planes normal to the z-axis into n2B squares of linear
dimension B each (L = nB). For each system configuration that is analyzed one then
considers rectangular columnswith a volume B × B × �z, with�z = z+ − z−, and
the values z+, z−, are chosen such that the local interface position zG is in between
z− and z+ for all blocks; here zG is defined as Gibbs dividing surface [8.49] in each
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block (see [8.117] for more details and explicit examples). In this way a local height
variable h(x, y) = zG is obtained. Of course, the “snapshots” of those coarse-grained
interface configuration depend very much on the “resolution of the microscope” with
which this coarse-grained interface is viewed [8.117, 8.118]. For small B the picture
is rather rugged; but always fluctuations of the local height h(x, y) are present, with
wavelengths over the full range B ≤ λ ≤ L .

The idea then is that for B > ξb “overhangs” of the local interface position no
longer occur, and the interface is locally sufficiently flat so that the energy cost of the
interfacial fluctuations can be described by the capillary wave Hamiltonian [8.49,
8.104], in d = 3

Hcw = 1

2
σ̃

L∫

0

dx

L∫

0

dy(∇h(x, y))2 . (8.41)

For off-lattice fluids or fluid binarymixtures therewould be no distinction between
σ̃ and the interface tension σ ; however, for lattice systems such as the Ising model
(as well as for the case of liquid-solid interface [8.119–8.124]) it is σ̃ which appears
as an energy parameter in (8.41).

Equation (8.41) can be brought to diagonal form by introducing Fourier trans-
forms, h(x, y) = ∑

�q h(�q) exp[i(qx x + qy y)] to find

Hcw = 1

2
σ̃

2π/B∑
qx=2π/L

2π/B∑
qy=2π/L

q2|h(�q)|2 . (8.42)

For such problems the equipartition theorem yields 1
2 σ̃q

2〈|h(�q)|2〉 = kBT
2 , and

hence the capillary wave spectrum is described by

〈|h(�q)|2〉 = kBT/(σ̃q2) . (8.43)

Numerical tests of this relation (where σ̃ = σ was found independently [8.117,
8.118]) have verified (8.43) convincingly. Actually, for liquid-solid interfaces one
broadly relies on the validity of this description, and uses (8.43) to estimate σ̃ by
studying 〈|h(�q)|2〉 in the simulations. Note that quantities such as 〈|h(�q)|2〉 can be
straightforwardly sampled by theMetropolis algorithm, although the slowness of the
interfacial relaxation on large length scales is a problem ((8.43) does imply that a
rough interface is in a sense a critical object, there is no finite correlation length ξ||
parallel to the interface that would limit the long-wavelength fluctuations).

A consequence of (8.43) also is that the mean-square width s2L of the coarse-
grained interface is size dependent. With 〈h(x, y)〉 = 0 one concludes

s2L = 〈|h(x, y))|2〉 =
∑

�q
〈|h(q)|〉2 = kBT

σ̃

∑
�q

q−2 . (8.44)
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Converting the sums over qx , qy in (8.44), cf. (8.42), into an integral yields

s2L = kBT

2πσ̃

2π/B∫

2π/L

dq/q = kBT

2πκ
ln(L/B) . (8.45)

Now one may argue that due to the interfacial structure on length scales smaller
than B one should allow for an “intrinsic width” ω0 of the interface on the scale B.
This intrinsic width is commonly included in terms of a convolution approximation
with the Gaussian distribution, PL(h) = (2πs2L)

−1/2 exp(−h2/2s2) [8.125], to find
for the mean-square width of the interface on the length scale L

w2
L = w2

0 − kBT

4σ̃
ln B + kBT

4σ̃
ln L . (8.46)

This logarithmic variation of w2
L with L has been extensively studied in simula-

tions (e.g [8.94, 8.113, 8.115, 8.117, 8.123, 8.126]) and was also used to estimate
σ/kBT . However, (8.46) obviously does not allow to identify w0 unambiguously,
since it is found to depend on the (somewhat arbitrary) parameter B [8.118]. On
scales B < ξ , the distinction between bulk and interface fluctuations is not really
uniquely possible [8.127], and extending the capillary wave model to describe this
regime is till an active area of research [8.128, 8.129]. Note also that in d = 2 a
treatment analogous to (8.41)–(8.44) is possible but yields

s2L = kBT

2πσ̃
a

2π/B∫

2π/L

dq/q2 = kBT

σ̃
La . (8.47)

Thus, in d = 2 interfacial fluctuations are even stronger than in d = 3. These
strong interfacial fluctuations are also one of the sources of the finite size effects
hampering the estimation of interfacial tensions, that we will discuss now.

Logarithmic Finite Size Effects on Interfacial Free Energies

As an example for the finite size effects that are observed, we start with the method to
extract the interfacial free energy from the order parameter distribution PL ,Lz (ρ), con-
sidering for simplicity thed = 2 lattice gasmodel atμ = μcoex (i.e., in “magnetic lan-
guage” used in Sects. 8.2 and 8.3 this corresponds to bulk magnetic field H = 0 and
the peaks of PL ,Lz at ρ = ρv = (1 − s∞)/2 and ρ = ρ = (1 + s∞)/2 correspond to
the states with positive and negative spontaneousmagnetization±s∞, of course). For
densities ρ near the density ρd of the rectilinear diameter, ρd = (ρv + ρ)/2, there
occurs a flat (almost strictly horizontal) minimum (see Fig. 8.7a). This minimum
is due to a state as shown in Fig. 8.5c: two domains of opposite magnetization (or
densities ρv and ρ, respectively) coexist in the system, separated by two domain
walls, which are oriented normal to the z-axis (if PBC in all lattice directions are
used). Then the difference in PL ,Lz (ρv) [or PL ,Lz (ρ)] and PL ,Lz (ρmin) just is due to
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the presence of the two domain walls; thus [8.105]

PL ,Lz (ρmin)/PL ,Lz (ρv) ∝ exp[−2σ(L; Lz)L
d−1/kBT ] , (8.48)

and hence from a sampling of PL ,Lz (ρ) one can estimate σ(L , Lz),

σ(L , Lz) = (2Ld−1)−1 ln[PL ,Lz (ρv)/PL ,Lz (ρmin)] . (8.49)

Note that using in the x-direction screw periodic boundary conditions (SPBC)
as defined in Sect. 8.4.1 one can obtain the interface free energy of interfaces tilted
by a chosen angle ϑ , as done in [8.101] and included in Fig. 8.6b. Equation 8.49 has
also been used for off-lattice systems such as the Lennard-Jones fluid (e.g. [8.130])
and other models [8.131–8.133]. Techniques to accurately sample probability dis-
tributions, that vary over many orders of magnitude have already been described in
Chap. 6 of this book.

Figure 8.7a shows, however, that (at least in d = 2) there does occur a significant
dependence on Lz . While in the case of APBC in the grand canonical ensemble
this dependence just reflects the translational entropy of the interface, which can
be located anywhere in the system, giving rise to a term S = −(kBT/L) ln(Lz),
Fig. 8.7b, the situation is more subtle in case of Fig. 8.7a. Already in the case of
APBC in the canonical ensemble, the interface (on average) is fixed at z = Lz/2,
to maintain that the density remains at ρ = 1/2. However, Fig. 8.7b reveals a term
S = − 1

2 (kBT/L) ln Lz + const. This comes about by the “domain breathing effect”
[8.89]. The “magnetizations”m+,m− in Fig. 8.6b can fluctuate, even when the aver-
age magnetization 〈m〉 = 0 is fixed, by corresponding fluctuations of the interface
position around its average position. These fluctuations imply the excess entropy
quoted above. Now in the case of PBC (and the canonical ensemble, to ensure
〈m〉 = 0) the domain with positive magnetization in Fig. 8.6c can be arbitrarily
translated in the simulation box, yielding the above translational entropy, but also
the distance between the walls can fluctuate, due to the above domain breathing
effect. This yields altogether an entropy −(3kBT/2L) ln Lz , but since we have two
interfaces in Fig. 8.6c, the contribution per interface then is−(3kBT/4L) ln Lz . This
consideration interprets the three slopes 1/2, 3/4 and 1 demonstrated in Fig. 8.7b.

Understanding the L-dependence of σ(L , Lz) even is more subtle. One can show
[8.134] that in d = 2 capillary waves cause a correction of order (kBT/2L) ln L , but
the domain breathing effect also contributes a term of order L−(d−1) ln L [8.89]. A
detailed discussion shows that (with the notation γL ,Lz ≡ σ(L , Lz)/kBT ) [8.89]

γ̃L ,Lz = γL ,Lz + x⊥ ln Lz − x|| ln L
Ld−1

= γ∞ + C

Ld−1
. (8.50)

The constants x||, x⊥ are universal {x⊥=1(APBC (gc)), 1/2 (APBC(c)) or 3/4
(PBC(c)), both in d = 2 and d = 3; x|| = 1/2 (APBC (gc), 1 (APBC (c) and 3/4
(PBC (c)), in d = 2, while x|| = 0, 1 1/2, in these three cases but d = 3, respec-
tively}. The constant C is non-universal. But Fig. 8.7c shows that (8.50) indeed
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Fig. 8.7 a Density distribution PL ,Lz (ρ) versus ρ for the two-dimensional Ising/lattice gas
model at the temperature kBT/J = 2.0 and the choice L = 20 for several choices of Lz : Lz =
30, 40, 50, 60, 70, 80, 90, and 100 (from bottom to top at ρ = 0.5) b Interfacial tension σ(L , Lz)

for the d = 2 Ising model at fixed L versus L−1 ln(Lz) for several choices of kBT/J and L , as
indicated in the key, and different combinations of boundary conditions (APBC, PBC) and statistical
ensembles of the lattice gas: grand canonical (gc) and canonical (c); in the latter case, ρ = 0.5 is
kept fixed. The straight lines shown have the slopes x⊥ = 1/2, 3/4 and 1, discussed in the text (c)
Reduced interfacial tension γ̃ (L , Lz) plotted versus 1/L for the d = 2 Ising model for two choices
of Lz(Lz = 60, 120) and fitted to the form γ̃ = γ∞ + C/L , at kBT/J = 2.0. The fitted results and
choices of boundary conditions and ensembles (cf. part b) are quoted in the key. Horizontal straight
line indicates the exact result [8.106] γ∞ = 0.228. d Reduced interfacial tension γ̃ (L , Lz) of the
d = 3 Lennard-Jones fluid at kBT/ε = 0.78 plotted versus L−2. Lengths are measured here in units
of the Lennard-Jones diameter σ (and the potential is cut and shifted to zero at r = 2.56σ ). Two
choices of Lz are included, and the results for γ∞ andC = C2 are quoted in the key (requesting that
there is no correction C1/L here). Both local and nonlocal moves of the particles in the simulation
box were used. From Schmitz et al. [8.89]

provides a good fit to the observed data, and converges to the exactly known result
[8.106] for all three choices of boundary conditions. It is obvious from Fig. 8.7c that
the data for γ̃L ,Lz (and those for γL ,Lz as well) do depend on the choice of boundary
conditions and ensemble, and finite size effects in d = 2 are quite pronounced, For-
tunately, due to the denominator L2 (rather than L) in d = 3 the finite size effects
typically are only of the order of a few percent. Figure 8.7d gives an example for the
LJ fluid (due to the lack of symmetry between the coexisting phases then only the
case of PBC(c) is possible).
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At this point we emphasize that all the data shown in Fig. 8.7b–d were obtained
with a rather new method to estimate the interfacial tension σ(L , Lz), namely the
so-called “ensemble switch” method [8.89, 8.135]. In this method one constructs
the desired free energy difference between a system without interfaces and a system
with one (or two) interfaces by defining a mixed Hamiltonian,

H = κH1 + (1 − κ)H0 , 0 ≤ κ < 1 . (8.51)

Here H1 is the desired system with two interfaces, while H0 is a system which
contains the two coexisting phases in separate boxes (of linear dimension Lz/2 in z-
direction) each, with periodic boundary conditions. Figure 8.8 illustrates this choice
for a Ising model with PBC. The two systems described by H1 and H0 hence have
exactly the same total volume and contain exactly the same number of particles (Ising
spins in the case of Fig. 8.8). Thus, althoughH(κ) cannot be realized in a laboratory
experiment, from the point of view of statistical mechanics (8.51) is a perfectly well-
definedHamiltonian suitable for the application ofMonteCarlomethods, irrespective
of the value of the parameter κ . The systems for κ = 0 and κ = 1 only differ by the
choice of boundary conditions, and hence

σ(L , Lz) = [F(κ = 1) − F(κ = 0)]/(2Ld−1) . (8.52)

By varying κ one hence can smoothly interpolate between the system with and
without interfaces. In practice one chooses a set of nκ discrete values κ; and com-
putes free energy differences�F = F(κi ) − F(κi−1) by (successive) umbrella sam-
pling [8.136], to find �F = ∑nκ

i=1 �Fi = F(κ = 1) − F(κ = 0). Here κi is taken
as an additional variable in the Monte Carlo sampling, allowing for moves κi
to κi+1 or vice versa, to sample the probability P(κi ) relative to P(κi+1). Then
�F = kBT ln{P(κi−1)/P(κi )}. Since the nκ “windows” {κi−1, κi } can be sampled
independently of each other simultaneously, this algorithm is suited for very efficient
parallelization.

Fig. 8.8 a Schematic
illustration of the ensemble
switch method, for the case
corresponding to Fig. 8.5c.
From Schmitz et al. [8.89]
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In a standard numerical integration, one would choose windows of equal size,
κi = i/nκ . However, it is better to choose the distribution of points κi ; more closely
spaced near κ = 0 and κ = 1, e.g. according to [8.135, 8.137]

κi = sin2(iπ/2nκ), i = 0, 1, . . . , nκ . (8.53)

We emphasize that this algorithm can also be used for off-lattice models, to study
the interface tension of liquid-vapor interfaces [8.89, 8.136, 8.137] and liquid-solid
interfaces.

For liquid-vapor interfaces (or for interfaces between coexisting phases in liquid
mixtures, respectively) the standard approach to estimate the interfacial free energy
has been based on the anisotropy of the pressure tensor Pαβ(z) across the interface
[8.49]

σ(L , Lz) = 1

2

Lz∫

0

{pzz(z) − 1

2

[
pxx (z) + pyy(z)]}dz . (8.54)

Here again it was assumed that PBC are used throughout, i.e. two interfaces
are present, and the canonical ensemble ensures that the density in the system is
constant. The linear dimensions L , Lz are chosen such that the two interfaces are
essentially non-interacting. Far from the interfaces, pxx (z) = pyy(z) = pzz(z) just is
the bulk pressure in the fluid, hence there the integrand of (8.54) vanishes (in practice,
of course, there is a problem to distinguish statistical fluctuations of the integrand
from small but systematic effects in the wings of the interfacial profile) Although
this traditional method [8.138] has been widely used, particularly in the context
of Molecular Dynamics simulations where the forces that are needed to compute
the pressure tensor from the Virial formula anyway are calculated to numerically
integrate Newton’s equation of motion of the particles, finite size effects hampering
(8.54) have been considered only rarely [8.139]. A further drawback of (8.54) is
that it cannot be used in cases where the pair potential between the particles is
singular, e.g. for hard spheres, the AO model of colloid polymer mixtures [8.35,
8.36], etc. Alternative methods for computing the pressure tensor in such cases have
been devised [8.140] but are cumbersome to apply.

Returning to Ising models, we note that many alternative methods to obtain the
interfacial tension were discussed in the literature, but lack of space prevents us
from describing all of them. We only mention one method [8.141, 8.142] based on
Jarzyinski’s nonequilibrium work theorem [8.143]

〈
exp

[
− W (ti, tF )

kBT

]〉
= exp

( �F

kBT

)
, (8.55)

where a dynamic nonequilibrium process is considered that transforms the state of a
system from an initial state (i) at time ti to a final state (f ) at time tf ,W (ti, tf) denotes
the total work done on the system during this transformation, and �F = Ff − Fi is
the desired free energy difference.
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To apply (8.55) to the Ising model interfacial free energy, we consider as initial
state a system with PBC throughout, which does not have any interfaces, and as final
state we have a system where between two planes (or rows in d = 2, respectively)
the exchange couplings are −J instead of +J (recall that this situation is equivalent
to the choice of uniform interactions with APBC in z-direction). The nonequilibrium
process that one considers is a gradual transformation of these exchanged couplings
between the considered two special planes (rows) from +J to −J , i.e.

J (tn)/|J | = 1 − 2n/N , tn = ti + n(tf − ti)/N , (8.56)

where N is the number of intermediate systems between the initial and final sys-
tem. The work δW (t) done in a time interval δt = (tf − ti)/N simply is related
to the energy change δH produced by (8.56) at this particular instant t of this
nonequilibrium process, and W (tf − ti) = ∫ tf

ti
δW (t)dt . Of course, the sampling of

exp(−W/kBT ) in (8.55) still requires a major effort, and it was found [8.142] that
N has to be large as well,N ≈ 105, to yield accurate results. In this algorithm, it is
rather natural to run this process in the backward direction in time as well, and check
that both directions yield the same result. Obviously, for the case of Ising systems
with APBC this method is closely related to the above ensemble switch method,
since (8.56) just creates “mixed Hamiltonians” H(κ) as used in (8.51).

Many special methods gradually creating interfaces have also been developed
for the case of interfaces between crystals and liquids (see e.g. [8.144, 8.145] and
references therein). However, this topic is beyond our scope here.

8.4 Wall Excess Free Energies

For the understanding of wetting phenomena (Sect. 8.2.3), heterogeneous nucle-
ation at walls [8.42, 8.43–8.47], etc, the interfacial tension between the appropriate
coexisting phases is one ingredient, but a second ingredient is the difference in the
appropriate surface free energies due to the wall (cf. Fig. 8.1 and (8.18), for instance).

In the Ising model, the spin reversal symmetry can again be exploited in the
context of thermodynamic integration methods to find directly the contact angle (but
one needs to be careful due to the anisotropy of the interfacial free energy, discussed
in Sect. 8.3). Block et al. [8.102] proposed to study this problem using Ising systems
with linear dimensions Lx , Ly and Lz , where on the bottom Lz × Ly surface a surface
field −|H1| acts, while on the top Lz × Ly surface a surface field +|H1| acts. In z-
direction PBC are used. If H1 = 0 and APBC are used in y-direction, an interface
perpendicular to the y-direction is stabilized. For |H1| > 0 this interface is inclined
by an angle θ relative to the yz-plane (Fig. 8.9a). However, it then is imperative to
use a so-called “generalized antiperiodic boundary condition” (GAPBC) [8.102]

S(x, y, z) = −S(Lx − x, y ± Ly, z) (8.57)
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where x, y, z are the Cartesian coordinates of the spin Si ; elsewhere labelled simply
by the index i {cf. (8.33)}. Note that for the choice of surface fields Hn = −H1 the
surface excess free energies f (+)

1 (T, H1), f
(−)
1 (T, H1)of the systemwith positive (+)

or negative (−) magnetization in the bulk due to the bottom wall (layer index k = 1)
are related by symmetry to the corresponding properties f (+)

n (T, Hn), f (−)
n (T, Hn)

of the top wall,

f (+)
1 (T, H1) = f (−)

n (T, Hn) , f (−)
1 (T, H1) = f (+)

n (T, Hn) (8.58)

and hencewefind for the localmagnetization via the derivativesm1 = −(∂ f1/∂H1)T ,
mn = −(∂ fn/∂Hn)T that

m(+)
1 (H1) = −m(−)

n (Hn) , m(−)
1 (H1) = −m(+)

n (Hn) . (8.59)

This is a special case of the more general symmetry m(+)(x, H1, Hn = −H1) =
−m(−)(Lx − x, H1, Hn = −H1) resulting from (8.57), cf. Fig. 8.9b, where for sim-
plicity x was treated as if it is a continuous variable (rather than being defined only
on lattice sites). Thus, the effect of GAPBC is that the coexisting domains are of
quasi-infinite size, their profiles in x-direction far from the interface are those of
bulk domains, exhibiting the proper symmetries, (8.58) and (8.59). Since the free
energy difference σwg − σw in Young’s equation, (8.18), in the present notation is
nothing but � f1 = f (+)

1 (T, H1) − f (−)
1 (T,−H1), (8.58) and (8.59) imply that

� f1 = −
H1∫

0

dH ′
1[m1(H

′
1) + mn(H

′
1)] (8.60)

but aswe shall see,Young’s equation (thatwould take the formσ(L , Lz) cos θ = � f1
here) needs modification due to the anisotropy of the interfacial tension.

We now discuss the free energy of the Ising model for the geometry of Fig. 8.9a.
We subtract from the free energy of the system the free energy of a systemwith the

same linear dimensions Lx , Lz but with PBC throughout, in a state with uniformly
positive or negative spontaneous magnetization. The result of this subtraction will
contain excess terms due to the walls and the inclined interface (and the two contact
lines where the interface meets the wall). The interfacial area is L̃ Lz with L̃ =
Lx/ sin θ . Making use of the symmetries noted in (8.58) this total interfacial free
energy contribution can be cast in the form [8.102].

Fint = Lx L yσ(θ)/ sin θ + Lz(Ly + Lx/ tan θ)γ (+)(|H1|)
+Lz(Ly − Lx/ tan θ)γ (+)(−|H1|) + 2Lzτ (8.61)

where the line tension τ has been introduced. Note that (8.61) simply reflects the
geometry ofFig. 8.9a, andwehave taken advantageof the special symmetry occurring



222 8 Finite Size Scaling Tools for the Study of Interfacial Phenomena and Wetting

(a)

(b)

Fig. 8.9 a Simulation geometry for a simple cubic lattice with box linear dimensions Lx , Ly, Lz
in the x, y, z-directions. While PBC are used in the z-direction, at the two free surfaces of linear
dimensions Ly, Lz boundary fields −|H1| at the bottom and +|H1| at the top are applied. Using
a generalized antiperiodic condition (GAPBC, see text) in y-direction, phase coexistence between
two domains with opposite magnetization ±mcoex in the bulk (symbolized by double arrows) is
stabilized. The domains are separated by a domain wall inclined by an angle θ . b Schematic profiles
of the layer magnetization m(+)(x), m(−)(x) across the film in the case of nonzero boundary fields.
It is assumed (as in part a) that a state of partial wetting is realized. Fore more explanations, cf. text.
From Block et al. [8.102]
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for |Hn| = −|H1| which ensures that the inclined interface is strictly planar and not
curved.

When one minimizes (8.61) with respect to θ (omitting the line tension term,
which is negligible in the thermodynamic limit) one finds

σ(θ) cos θ − dσ(θ)

dθ
sin θ = � f1 (8.62)

which is the well-know [8.146] modified Young’s equation. A noted in (8.60), � f1
can be found straightforwardly from thermodynamic integration (in (8.60), one does
not use theGAPBCneeded to have an inclined interface, but rather has simple PBC in
both y- and z-directions, and a state with uniform positive or negative ferromagnetic
order). When σ(θ) is known, the contact angle can be extracted from (8.62). Of
course, when σ(θ) is not known, the simulation using GAPBC with conserved total
magnetization allows to estimate θ from direct “measurements” of the magnetization
profile (as function of the variables y and x) in the system, as described in [8.102].

When Fint (8.61) and � f1 and γ (+)(|H1|) hence have been found from thermo-
dynamic integration methods, and θ is known as well as σ(θ), even the line tension
τ can be estimated (τ is found to depend on both temperature T and contact angle
θ , as expected). Of course, carrying out these procedures for different choices of
the linear dimensions Lx , Ly and Lz one can check that the finite size effects (that
occur for all interfacial properties, as discussed in Sect. 8.3) are small enough so that
they can be neglected in this analysis. In the study of Block et al. [8.102] a parallel
graphics processing units (GPU) implementation of the Ising model based on a
checker board update was used, allowing to get very precise results for system sizes
up to about 46 million Ising spins.

In the Ising model, where commonly the physical effect of the wall (apart from
the missing neighbors) is described by the term−H1

∑
i∈1 Si in the Hamiltonian, the

relationm1 = −(∂ f1/∂H1)T for the surface layermagnetizationm1 = 〈∑i∈1 Si 〉/N1

where N1 is the number of spins in the 1st layer adjacent to the wall, has been
a convenient starting point for the thermodynamic integration. However. it turns
out that with a little thought the approach can be extended to off-lattice systems
[8.44]. As a first step, consider an Ising system where the action of the surface
magnetic field is not restricted to a single lattice plane but extends further into the
bulk, described by a term−H1

∑
i,k Si,k f (k), where the index k = 1, 2, . . . labels the

planes parallel to the surface. Taking a derivative of thewall excess free energy f1 then

will generate a term m̃1 = −(∂ f1/∂H1)T with m̃1 = 1
N1

〈 ∑
i,k Si,k f (k)

〉
which also is

straightforward to sample by standardMonte Carlo methods. Then� f1 = f1(H1) −
f1(0) = − ∫ H1

0 m̃1(H ′
1)dH

′
1. This approach then can be directly generalized to the

off-lattice case, where the wall effect can be described by a potential Uwall(z) =
Urep(z) − ε fatt(z) with a repulsive partUrep(z) that is infinity for z = 0 confining the
particles in the region z > 0. The attractive part Uatt(z) is described as a product of
an energy parameter ε and a function fatt(z) describing its range. One then similarly
can derive a relation [8.44]
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ρ̃ = −(∂σw/∂ε)T , ρ̃ = 1

A

∫
dx

∫
dy

∫
dzFatt(z)

〈
ρ
(
x, y, z

)〉
. (8.63)

where A is the area of thewall. Equation (8.63) can then be used for a thermodynamic
integration approach to extract differences of the wall tension σw of the liquid.

Also the ensemble switch method is a powerful approach to extract wall excess
free energies [8.33, 8.34]. The basic equation is again (8.51): but now we mix
one system (κ = 0) with periodic boundary conditions throughout and another one
(κ = 1) with two equivalent walls at z = 0 and z = Lz . Both systems thus have
exactly the same volume V = L × L × Lz (in x, y directions periodic boundary
conditions are used in both systems) and the same number of particles. Thus, (8.51) is
a well-defined Hamiltonian for arbitrary values of κ also in this case, but the resulting
surface tension σ(L , Lz), (8.52), now is a wall tension. It has been found that in this
case it is crucial to vary Lz over a wide range and carry out a linear extrapolation
of the results for σ(L , Lz) against 1/Lz . This problem can be understood from the
fact that in the systems with the walls in general there occurs an excess of particles
near the walls (there is a positive surface excess density ρs for sufficiently strongly
attractive potentials, and a negative surface excess density for repulsive ones). Due to
this effect, the density in the center of the system will differ from the bulk density ρb

that is used in the system without any walls by a correction of order ρs/Lz . But one
can choose L relatively small, at least in cases where no critical wetting occurs, since
the perturbation of the fluid near the wall does not involve large-scale fluctuations
parallel to the wall, unlike interfaces between coexisting phases.

This method (and related earlier methods [8.147–8.149]) have been widely used
to study the wall tension of hard spheres and other models of colloidal fluids [8.33,
8.34, 8.47, 8.140]; often the motivation has been to provide “benchmarks” against
which the accuracy of analytical theories such as the density functional theory can be
tested. Note that the standard method, based on the anisotropy of the pressure tensor
analogous to (8.54) (see e.g. [8.40]) cannot be used when the interparticle potential
is singular.

Putting then the knowledge of accurately determined interface tensions and wall
tensions together, one can return to the problem of wetting phenomena in off-lattice
fluids (Fig. 8.1). Pioneering studies along such lines have been performed both for
the AO model of colloid-polymer mixtures [8.33, 8.34] and the Lennard-Jones fluid
[8.150]. Grzelak and Errington [8.150] suggested to locate the prewetting transi-
tions (Fig. 8.1b) for their model, demonstrating finite size effects of order L−2, as
expected from (8.50). A particularly compelling aspect of this study is the combina-
tion of results obtained from simulations in both the canonical and the grandcanonical
ensemble. It was demonstrated that the finite size effects are of the same order (L−2)

but different magnitude in both ensembles, but do converge to the same result for
L → ∞. This study was based on the use of “transfer matrix Monte Carlo” [8.151],
which is a variant of the extended ensemble methods described in Chap. 6, in order
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to accurately locate the first-order prewetting transition in the parameter space of
this model.

8.5 Discussion

While in the early days of thefirst applications of theMonteCarlomethod to problems
in the physics of solids and liquids the emphasis was on bulk properties, and a study
of interfacial problems anyway would have been elusive due to the lack of computer
power, in the last decades a shift of interest to the properties of inhomogeneous
systems with surfaces and interfaces has occurred. E.g., when one is interested in
the properties of nanoparticles, ultrathin films, etc., the power of analytical methods
is clearly even more restricted than with respect to the properties of bulk condensed
matter, and correspondingly the need for well-controlled Monte Carlo simulation
approaches is evident.

In the present chapter,we hence have presented some extensions of the methodol-
ogy that was exposed in previous chapters in order to give the reader a flavor of how
one can obtain quantities such as interface tensions, wall excess free energies, con-
tact angles and the singularities associatedwithwetting transitions fromMonte Carlo
simulations. As in previous chapters, we have focused on simple models such as the
Ising/lattice gas model or the Lennard-Jones fluid, disregarding completely impor-
tant questions such as “multiscale simulations” (where one tries to create bridges
from the quantum mechanical description of electronic structure up to macroscopic
properties of composite materials or of complex fluids such as biological matter)
completely. The latter subject is clearly a main stream area of research (e.g. [8.152]),
but the methodology described in the present chapter will be an indispensable input
for this ambitious approach. We here have pointed out that the presence of interfaces
and surfaces provides a substantial complication for properly performing a simula-
tion and correctly analyzing the results: due to the naturally occurring anisotropy,
directions parallel and perpendicular to the interface (and/or walls) are no longer
equivalent, and in general it is no longer appropriate to choose the linear dimensions
parallel (L) and perpendicular (Lz) to the interface (and/or the wall of a container)
equivalent, and often size effects with respect to both L and Lz need to be carefully
analyzed. For this purpose, both the statistical physics of interfaces and of wetting
phenomena needs to be understood and taken into account, as attempted in the present
chapter. Since Monte Carlo sampling does not give free energies directly, estimating
the excess free energies due to interfaces and walls is a subtle matter, andmanymeth-
ods to achieve this task were derived. A few of them, which were found particularly
useful, were described in this chapter.
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Throughout the guide we have encountered a number of algorithms. It was intended
that everyone who actively participated in the guide would be able to try out the
presented algorithms. All the algorithms given in the text were given in the pseu-
doprogramming language. We realize that at the moment not everybody is familiar
with an algorithmic language. A guide, however, is of no use when the participants
cannot sit down and do the simulations by themselves.

To help to ease the conversion from the algorithmic language into C we include in
this appendix C versions of two of the basic algorithms. The participant will by now
have a feeling for how some of the problems are attacked and will find no difficulty
in adapting the given C programs to other algorithms given in the text.

A.1 Algorithm for the RandomWalk Problem

The first listing is a program for the simple sampling of random walks.

1 /* ------------------------------------------------------------------------ */

/* */

3 /* Algorithm */

/* */

5 /* Simple Sampling for the Random Walk Problem */

/* */

7 /* ------------------------------------------------------------------------ */

9 /* ==== Include files ==== */

11 #include <stdio.h>

#include <stdlib.h>

13 #include <math.h>

15

int main(int argc , char **argv) {

17

/* --------------------------------------------------------------------------*/

© Springer Nature Switzerland AG 2019
K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics,
Graduate Texts in Physics, https://doi.org/10.1007/978-3-030-10758-1

227

https://doi.org/10.1007/978-3-030-10758-1


228 Appendix

19 /* Main program */

/* --------------------------------------------------------------------------*/

21

/* ==== General declarations ==== */

23

int ip;

25 int seed;

27 long nwalk ,n;

29 long i,j;

31 double x,y;

double edx ,edy ,edxs ,edys ,xsqr ,ysqr;

33

/* ==== initialize ==== */

35

seed = 1234;

37 n = 1000;

nwalk = 100000;

39

edx = 0.0;

41 edy = 0.0;

43 edxs = 0.0;

edys = 0.0;

45

/* ==== set up the random number generator ==== */

47

srand(seed);

49

/* ---------------------------------------------------------- */

51 /* M o n t e C a r l o */

/* ---------------------------------------------------------- */

53

for(i=0; i<nwalk; i++) {

55

x = 0.0;

57 y = 0.0;

59 for(j=0; j<n; j++) {

61 ip = rand() % 4;

switch (ip) {

63 case 0: x -= 1.0;

break;

65 case 1: y -= 1.0;

break;

67 case 2: y += 1.0;

break;

69 case 3: x += 1.0;

break;

71 }

73 }

75 /* ==== accumulate the result ==== */

77 xsqr = x * x;

ysqr = y * y;

79

edx += xsqr;

81 edy += ysqr;

83 edxs += xsqr * xsqr;

edys += ysqr * ysqr;

85 }

87 /* ==== perform the averaging ==== */

89 edx /= (float) nwalk;

edy /= (float) nwalk;

91

edxs /= (float) nwalk;
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93 edys /= (float) nwalk;

95 printf("%f %f %f %f\n",edx ,edy ,edxs ,edys);

97 exit (0);

} /* ---- end of main ---- */

A.2 Algorithm for Cluster Identification

The algorithm to identify all clusters in a given percolation configuration is based
on an idea first proposed by Hoshen and Kopelman [A.1]. This idea was further de-
veloped by Kertesz (J. Kertesz, Private communication) and the algorithm described
below makes extensive use of his development.

The algorithm uses labels which we also found useful for other algorithms given
in the text. Suppose we scan the lattice from the upper left corner to the upper right
corner and continue with the next row starting from the first site of the left edge:

etc.

This is rather like a typewriter working its way across the paper. We start by
labeling the first occupied site with a “1”. If the next site is occupied we carry the
label “1” to this site. If we find another occupied site which is not connected with
the cluster labeled “1”, we label it with a “2”, etc. Assume we are somewhere in the
lattice. All the sites above and to left have been worked on. Assume further that the
current site is occupied. We check whether the site above the current site is occupied.
If so we read the label of this site. Next we check whether the site to the left is
occupied. If so, we read the label of this site. What label should be assigned? The
labels of the site above and the site to the left might not be the same. The two sites
can belong to two, until now, unconnected clusters. The current site is a link between
them. Both clusters have different labels. We need a means of identifying different
labels with each other.

The idea used to equate different labels is to use a sort of permutation vector. If
the cluster labeled, say, “10” becomes a part of the cluster labeled “7” we make an
entry in element number “10” that we should really look for label “7”.

That two clusters have to be recognized as one cluster can, of course, occur more
than once. The cluster labeled “7” may be connected to cluster “5”. How do we
identify the root label?

Each time two clusters are identified with each other the number of sites in the
cluster increases by more than one unit. From where do we get the information on
the number of sites in a cluster?

The two questions raised in the preceding paragraphs can be answered together.
We introduce two kinds of pointers. Positive integer numbers signify the number of
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sites in the cluster. Negative integer numbers are the pointers to the next label. Going
through the permutation vector we continue until a positive number is found.

A listing of a program where the idea outlined above is realized is given below.

/* ------------------------------------------------------------------------ */

2 /* */

/* Simple Sampling of the 2D percolation problem */

4 /* */

/* Analysis of the droplet distribution. */

6 /* */

/* ------------------------------------------------------------------------ */

8

/* ==== Program constants ==== */

10

# define L 40

12

/* ==== Include files ==== */

14

#include <stdio.h>

16 #include <stdlib.h>

#include <math.h>

18

20 int main(int argc , char **argv)

{

22 /* -------------------------------------------------------------------- */

/* Declarations */

24 /* -------------------------------------------------------------------- */

26

int lattice[L][L]; /* 2D Ising spin system */

28 int row[L+1]; /* temp */

int lptr[L*L+1]; /* Contains the pointer. The dimension */

30 /* is set , such that a magnetization of */

/* one , i.e., one huge cluster is */

32 /* possible. */

34

float clusterVector [L*L+1];

36 float nsc[L*L+1];

38 float averagePercProb;

float avergageSuceptibility ;

40 float rlsqr;

float chi;

42 float r;

float p;

44

int nofs , irow , i, j;

46 int la, cl, ms, up, mlarge , mcsmax;

int seed , large;

48 int mcs;

int icol , left , mini , maxi;

50 int nis , nup;

int l_sqr;

52

/* -------------------------------------------------------------------- */

54 /* End of Declarations */

/* -------------------------------------------------------------------- */

56

/* -------------------------------------------------------------------- */

58 /* Simulation parameters */

/* -------------------------------------------------------------------- */

60

62 mcsmax = 1000000;

seed = 12635;

64 p = 0.592746;

66

/* -------------------------------------------------------------------- */

68 /* Set and Initialize */
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/* -------------------------------------------------------------------- */

70

/* ==== set up the random number generator ==== */

72

srand(seed);

74

/* ==== Initialize the label array ==== */

76

l_sqr = L * L;

78 rlsqr = (float) l_sqr;

large = 0; /* largest cluster found. Also stack top */

80 mlarge = 0; /* the largest cluster ever encountered */

82 averagePercProb = 0.0;

avergageSuceptibility = 0.0;

84

for (i = 0; i <= l_sqr; i++){

86 lptr[i] = 0;

nsc[i] = 0.0;

88 clusterVector [i] = 0.0;

}

90

maxi = l_sqr + 2;

92

/* -------------------------------------------------------------------- */

94 /* */

/* M O N T E C A R L O P A R T */

96 /* */

/* -------------------------------------------------------------------- */

98

for (mcs = 1; mcs <= mcsmax; mcs++){

100

for (i = 0; i < L; i++){

102 for (j = 0; j < L; j++){

lattice[i][j] = 0;

104 r = (float) rand () / (float) RAND_MAX;

if (r < p) {

106 lattice[i][j] = 1;

}

108 }

}

110

/* -------------------------------------------------------------- */

112 /* */

/* D r o p l e t A n a l y s i s */

114 /* */

/* -------------------------------------------------------------- */

116

/* ==== The array <<<row >>> holds always the previously ==== */

118 /* ==== analysed row from the array lattice. ==== */

/* ==== First row is taken as entirely unoccupied , i.e. ==== */

120 /* ==== free boundary conditions ==== */

122 cl = 0; /* Will be the largest cluster pointer */

la = 0;

124

for (irow = 0; irow <= L; irow ++){

126 row[irow] = maxi;

}

128

/* ==== Go through the lattice row by row ==== */

130

for (irow = 0; irow < L; irow ++){

132 for (icol = 0; icol < L; icol ++){

if (lattice[irow ][icol] != 1){

134 row[icol +1] = maxi;

}

136 else {

/* ==== Check whether the spin is connected ==== */

138

up = row[icol +1];

140 left = row[icol ];

142 if (up != maxi){
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/* ==== Spin is connected to the previous row. ==== */

144

if (lptr[up] < 0){

146 /* ==== Found a negative label , signaling a ==== */

/* ==== a pointer. Search now for the root. ==== */

148

ms = lptr[up];

150 while ( ms < 0 ){

la = -ms;

152 ms = lptr[la];

}

154 lptr[up] = -la;

up = la;

156 }

}

158

if (left != maxi){

160 /* ==== Spin is connected to left neighbour. ==== */

162 if (lptr[left] < 0) {

/* ==== Found a negative label , signaling a ==== */

164 /* ==== a pointer. Search now for the root. ==== */

166 ms = lptr[left ];

while ( ms < 0 ){

168 la = -ms;

ms = lptr[la];

170 }

lptr[left] = -la;

172 left = la;

}

174 }

176 /*mini = min(up,left); */

mini = (up < left) ? up : left;

178 if (mini == maxi) {

/* ==== Spin is not connected. Assign new label ==== */

180

cl++;

182 row[icol +1] = cl;

lptr[cl] = 1;

184

}

186 else {

/* ==== Spin is connected. Find minimum label ==== */

188

nofs = 1;

190 if (up != left){

/* ==== Possibly two clusters joined ==== */

192 /* ==== into one. Count both parts ==== */

/* ==== towards the number of cluster. ==== */

194

if (up != maxi){

196 nofs += lptr[up];

lptr[up] = -mini;

198 }

200 if (left != maxi){

nofs += lptr[left];

202 lptr[left] = -mini;

}

204 }

else {

206 /* ==== The two possible cluster are ==== */

/* ==== part o one. Count only one ==== */

208

nofs += lptr[left ];

210 lptr[left] = -mini;

}

212 row[icol +1] = mini;

lptr[mini] = nofs;

214 }

}
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216 }

}

218

/* -------------------------------------------------------------- */

220 /* */

/* E n d D r o p l e t A n a l y s i s */

222 /* */

/* -------------------------------------------------------------- */

224

226 /* -------------------------------------------------------------- */

/* */

228 /* Analysis of droplet numbers */

/* */

230 /* -------------------------------------------------------------- */

232 for (i = 0; i <= l_sqr; i++) {

clusterVector [i] = 0.0;

234 }

236 /* ==== Get the largest droplet and the size distribution ==== */

238 large = 0;

for (i = 1; i <= cl; i++){

240 nis = lptr[i];

if ( nis > 0 ) {

242 if ( nis > large ) { large = nis; }

clusterVector [nis] += 1.0;

244 nsc[nis] += 1.0;

}

246 }

248 /* ==== Compute the susceptibility and accumulate ==== */

250 chi = 0.0;

nup = 0;

252 for (i = 1; i <= large ; i++) {

chi += i * i * clusterVector [i];

254 nup += i * clusterVector [i];

}

256 chi -= large * large * clusterVector [large];

258 averagePercProb += nup / rlsqr;

avergageSuceptibility += chi / rlsqr;

260

if (large > mlarge) { mlarge = large; }

262

for (i = 0; i <= l_sqr; i++) {

264 lptr[i] = 0;

}

266

/* -------------------------------------------------------------- */

268 /* */

/* End analysis of droplet numbers */

270 /* */

/* -------------------------------------------------------------- */

272

274 } /* end of Monte Carlo loop */

276 /* -------------------------------------------------------------- */

/* */

278 /* P r i n t r e s u l t s */

/* */

280 /* -------------------------------------------------------------- */

282 averagePercProb /= (float) mcsmax;

avergageSuceptibility /= (float) mcsmax;

284

printf("percProb = %f\nchi = %f\n",averagePercProb ,

286 avergageSuceptibility );

printf("\n***** Droplet Analysis *****\n");

288 printf("Largest droplet = %d\n",mlarge);
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290 for (i = 1; i <= mlarge; i++){

if (nsc[i] != 0.0) {

292 printf("%d %f\n ",i,nsc[i]/ (float) mcsmax);

}

294 }

printf("\n");

296

} /* end of main program */
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transition path, 173–176
transition state, 175

Ensemble switch method, 224
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Entropic barrier, 172, 173
Equal weight rule, 168
Equipartition theorem, 144
Ergodic, 32

time, 46, 51, 56
Error, 35

relative, 68
Event-Chain Monte Carlo, 189
Exchange, 137
Excluded volume interaction, 13, 15
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F
Fermion, 150, 151, 153, 155
Filling transition, 206
Finite size
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scaling corrections, 53, 56
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Finite size scaling, anisotropic, 203
First-passage kinetic Monte Carlo algo-
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Fluid–solid transition, 137
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Free energy barrier, 159, 161, 162, 177
Free energy, interfacial, 208
Free energy landscape, 159, 163, 164, 169,

173, 174, 176, 177, 195
Free energy, surface excess, 208
Free energy, wall excess, 220, 224

G
Generalized antiperiodic boundary condi-

tion (GAPBC), 220, 223
Gibbs dividing surface, 213
Gibbs ensemble, 130
Gibbs-Thomson effect, 199
Gillespie algorithm, 182, 184
Glass transition, 162
Glauber, see Spin-flip
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Growth phenomena, 31
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Harmonic approximation, 138
Harmonic chain, 143
3He, 146
4He, 146, 147
Heisenberg chain, 149
Heisenberg model, 7, 24, 141
Heisenberg uncertainty principle, 138, 145
Helium, 137
Heterogeneous nucleation, 208, 220
High-temperature series extrapolations, 54
High-temperature superconducting materi-

als, 153
Histogram extrapolation, 116, 124–126,

167, 168, 177
Homogenous nucleation, 208
Hopping process, 151
Hubbard Hamiltonian, 155
Hubbard model, 152, 153, 155
Hybrid Monte Carlo, 188
Hyperscaling, 59, 123, 196

I
Identity permutation, 147
Imaginary time, 148
Improved actions, 147
Improved estimators, 116, 120
Infinite potentials, 32
Interface, 110, 161, 172, 191
Interface, liquid-vapor, 219
Interface tension, 214
Interfacial fluctuations, anomalous, 206
Interfacial stiffness, 211, 213
Interfacial tension, 47, 162, 175, 177, 191,

198, 220
Intrinsic width, 215
Ising model, 7, 19, 22, 25, 49, 98, 117, 148,

159, 160, 169–172, 175, 182, 196,
208

Isotope effects, 145
Isotropic spin system, 46
Itinerant magnetism, 153

J
Jarzyinski nonequilibrium work theorem,

219
Jordan–Wigner transformation, 151

K
Kardar–Parisi–Zhang equation, 185

Kawasaki, see Spin-flip
Kinetic energy, 136, 154
Kinetic Monte Carlo, 184

L
τ -leap algorithm, 183
Latent heat, 66, 158
Lattice animals, 94
Lattice gas, 22, 198
Lattice parameter, 137, 139, 146
Lennard–Jones, 111, 129, 160, 170, 208
Lennard -Jones mixture, symmetric binary

(A,B), 209
Lifted Metropolis-Hastings, 188
Lifting, 188, 189
Line tension, 200, 221
Liquid-solid interface, 214
Liquid-vapor interfaces, 219
Logarithmic finite size effects, 215
Long range interaction, 177

M
φ4 model, 24, 50, 53
Macromolecules, 10
Magnetization, 68, 141, 172, 175

spontaneous, 27, 44, 120
Marginal dimension, 59
Markov

chain, 20, 98
process, 21, 181

Master equation, 31, 187
Matrix element, 148
Maximal global balance condition, 189
Mean field, 59
Metal–insulator transition, 153
Metastable phase, 208
Metropolis

function, 99
Minus-sign problem, 155
Molecular dynamics, 35, 174
Moment of inertia, 139
Momentum operator, 135, 139
Monolayers, 139
Monte Carlo, 144

Green’s function (GFMC), 156
multicanonical, 163, 167–169, 172
multigrid, 116
path integral, 140, 141, 156
Projector Quantum (PQMC), 156
Quantum, 141
renormalization group, 49, 54
step (MCS), 21, 26, 31, 56, 100
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variational (VMC), 156

N
N2, 139
Neighbor list, 84
Neon, 137, 146
Next reaction method, 183
N-fold-way, 182, 184
Noble gases, 137
Non-reversible Markov chain Monte Carlo,

188
Nucleation, 31, 162, 164, 174–176, 208
Nucleation, heterogeneous, 208, 220
Nucleation, homogenous, 208
Nucleation rate, 208
Numerical integration, 9

O
Observation time, 45
Optimized Direct Method, 184
Order parameter, 37, 45, 50, 52, 159, 161,

162, 177, 194
orientational, 141
root mean square, 46

Overlapping distribution method, 165
Oxygen, 138

P
Parallel graphics processing units (GPU),

223
Parallel kinetic Monte Carlo, 186
Parallel tempering, 169
Particle number operator, 150
Partition function, 11, 135, 141–143, 146,

148, 149, 153, 154, 157, 158, 160
Pauli matrices, 151
Pauli principle, 151
Pauli spin matrices, 148
Percolation, 18, 38, 52, 88, 117, 118

bond, 39, 44, 94
continuum, 95
kinetic, 95
probability, 38
site, 89
site–bond, 95
threshold, 89

Periodic boundary conditions, 148
Periodic boundary conditions, screw

(SPBC), 216
Permutation operator, 146
Phase space, 9, 18, 24, 32

Phase transition, 18, 28, 37, 44, 122–134,
139, 158, 162, 167, 169, 173, 177,
193

structural, 139
Phonon, 137, 138
PIMC, 141, 145, 155
Planck’s constant, 144
Polyethylene, 139, 140
Polymer, 139, 163, 169
Polymer mixture, 123
Position operator, 135, 136
Potts model, 63, 111, 117, 118, 158, 159,

168, 169, 193
Preferential surface site selection, 28
Prewetting transition, 199, 224
Primitive action, 147
Probability distribution, 45, 124
Protein, 162, 176, 177
Protein folding, 162, 173, 176

Q
β-quartz, 138
Quantum chemistry, 177
Quantum chromodynamics (QCD), 195
Quantum crystals, 146
Quantum fluids, 146
Quantum particle, 141
Quantum statistical mechanics, 135–137,

144, 145

R
Random field Ising model (RFIM), 197
Random number, 21, 25, 38

correlation, 81, 121
generator, 10, 30, 78, 81
pseudo, 10, 49

Random walk, 13, 17
in energy space, 170
nonreversal, 11, 83
self-avoiding, 11, 85, 96, 112

Reaction coordinate, 173, 174
Recursion algorithm, 91
Rejection-Free Methods, 180
Relaxation

function, 37
nonlinear function, 37
time, 27, 125, 173
time displaced, 35
time intrinsic, 51, 56

Renormalization, 53
Renormalized coupling constant, 48
Replica exchange Monte Carlo, 169, 176
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Reptation, 23, 24, 88
Residence time algorithm, 184
Reweighting, 116, 122–127
Ring polymer, 143–147
Rotational diffusion, 46
Rotors, 156
Roughening transition, 57, 211
Rouse, 24

S
Sampling

biased, 74, 95
importance, 7, 19, 31, 38, 74, 98
simple, 7, 10, 14, 15, 37, 74, 76

Scaling
function, 42, 52, 104, 128, 130
laws, 41

Schrödinger equation, 135, 156
Screw periodic boundary conditions

(SPBC), 211, 216
Self-average, 67, 109

lack of, 17, 66
strong, 17, 67
weak, 68

Self-avoiding random walk, see Random
walk

growing, 98
k-tuple, 97

Semi-infinite system, 29
Shooting algorithm, 174
Silicon, 138
Simulated tempering, 195
SiO2, 138, 145
Slithering snake, see Reptation
Sorting Direct Method, 184
Specific heat, 57, 64, 119, 122, 130, 137, 141
Spin-flip

exchange, 22, 27
single, 22, 25, 100, 110, 121

Spin glass, 31, 45, 49, 58, 115, 162, 169, 170,
173

Spinodal decomposition, 31
Spin operators, 141, 148
Spin wave theory, 141
Statistical

error, 35, 56, 125, 168
inefficiency, 37
weight, 9, 11, 32

Structure factor, 152
Subsystems, 48, 120, 122
Superfluidity, 137, 147
Suprafluid, 137

Surface field, 206
Surface free energy, 161
Surface-induced disordering (ordering), 159
Surface susceptibility, 204
Susceptibility, 38, 47, 68, 119
Sweep, 100
Symmetric binary (A,B) Lennard -Jones

mixture, 209
Symmetry breaking, 51, 120

field, 51
Synchronous parallel kMC method, 187
Systolically, 180

T
Table method, 27
Tension, interface and wall, 208
Thermal de Broglie wavelength, 138, 144,

145, 147
Thermal expansion coefficient, 137
Thermal length, 59
Thermodynamic integration, 158
Thermodynamic length, 134, 198
Thermodynamic limit, 45, 48, 158
Thin-film, 29
Transfer matrix, 54
Transfer matrix Monte Carlo, 224
Transition path sampling, 164, 173, 175–177
Transition point, 107
Transition probability, 20, 24, 25, 98, 174,

181
Transverse field, 148, 149
Tree, 91
Trotter dimension, 149
Trotter formula, 148, 149, 153
Trotter index, 144, 149
Trotter number, 138, 145, 146, 148
Trotter–Suzuki formula, 142, 147, 153
Tunnelling, 139
Two-dimensional Ising model, 182

U
Umbrella sampling, 163, 165, 166, 169, 175,

177
successive, 160, 166

Universality class, 198
Update, checker board, 223

V
Vapor–Liquid transition, 159, 167
Vibrations, 141
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W
Walks

biased, 82
random, 11, 76
self-avoiding, 12, 32, 123

Wall excess free energy, 220, 224
Wall tension, 192, 198, 224
Wang–Landau method, 163, 167, 169, 170,

177, 195
Wave functions, 139, 146, 156
Wetting, 198, 208, 220
Wetting, critical, 206
Wetting transition temperature, 200, 206
Width, intrinsic, 215

X
Xenon, 137
XY -model, 7, 9, 23, 49, 54, 111, 193

Y
Young’s equation, 198

Z
Zero-point motion, 138
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